CSci 2021 Review Lecture 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Midterm 1 topics (in one slide)

@ The C language
® Functions, variables, and types
® Branches and loops
® Arrays, pointers, and structures
® Number representation
® Bits and bitwise operators
® Unsigned and signed integers
® Floating point numbers
® Machine-level code representation

® Instructions, operands, flags
® Conditions and branches

Outline

C language topics

C compared to other languages

® Predecessor of C+, Java, other more modern
languages

® No objects, for instance functions and no
methods

® Most features have a direct translation to
machine code

C numeric types

@ char, short, int, and long are 8, 16, 32, or
64 bits on x86-64

@ Unsigned integers are > 0

@ Mixed operands upgraded to larger size and
unsigned

@ float and double are 32-bit and 64-bit
floating point

Kinds of variables and allocation

® Local variables exist in one function execution,
and go away when it is over
® Even if you think you have a pointer to it!
® Global variables can be accessed from any
function, and last for the whole program
® For more control, allocate memory with malloc
and get a pointer




C strings

@ Instead of a real string type, C programs pass
pointers to characters

® Usually, length of string is indicated by a \0
terminator

@ Transform strings by writing loops over
characters

@ Programmer needs to be explicit about
allocation and sharing

C pointers

® Pointers hold addresses, and the compiler
knows their type

® Create a pointer to a variable with &
® Dereference a pointer with *

@® Pointer arithmetic uses the element size, like an
array
® In fact, a[x] is the same as *(a + x)

More about pointers

@ Pointer parameters implement pass by
reference
@ The null pointer doesn't point at anything
® So don't dereference it
® When using pointers, pay attention to data
lifetime and sharing

C structures

® A struct groups several related values
together
® Similar to objects with features removed
® Commonly structs are accessed with pointers,
fields with —>
® For instance, to implement linked lists and trees

® malloc with the structure size is like new

For instance, HA1 hashtable

® Several possible designs:
® Array of pointers to list nodes
® Array of root structures pointing at list nodes
® Array of first list nodes (insert second)

® Choices for string storage:

® Struct has char array, strcpy
® Struct has char pointer, strdup

Outline

Topics in number representation




Bits and bitwise operations

@ Base 2 (binary) and base 16 (hex) generalize
from base 10 (decimal)

@ And, or, xor, not
@ Left shift, two kinds of right shift
@ Similarity to multiply/divide by 2%

Unsigned and signed integers

® Unsigned: plain base 2, non-negative
® Overflow is like operations modulo 2™
® Signed: two's complement with a sign bit

® Sign bit counts for negative place value
® Overflow possible in both directions
® Comparing the two

® Ranges partially overlap

® +, -, * (same size output), <<, ==, narrowing are the
same

® /, %, >>, <, * (high output bits), and widening are
different

® Algebra properties exist despite overflow

Floating point numbers

® Represent fractions and larger numbers using
binary scientific notation
@ Fractions whose denominator is a power of two

® All others must be rounded
® Limited precision gradually loses information

@ Rounding: examine thrown-away bits
@ Special cases for +/- 0, +/- co, NaN

@ Ordering properties but fewer algebraic
properties

Normalized and denormalized

® All but the smallest finite numbers are
normalized

® Represent as 1.x - 2¢
® (Leading 1 is not stored)

® For smallest numbers, special denormalized
form

® Smallest exp encoding: same E as smallest normal
® Leading O is not stored

Outline

Exam logistics

Exam rules

@ Begins promptly at 3:35, ends promptly at 4:25
® Open-book, open-notes, any paper materials OK

® No electronics: no laptops, smartphones,
calculators, etc.
® Arithmetic will use easy numbers

® Sit in alternating seats as long as possible




Exam strategy suggestions

@® Writing implement: mechanical pencil plus good
eraser

@ Make a summary sheet to save flipping though
notes or textbook

® Show your work when possible
@ Do the easiest questions first
@ Allow time to answer every question

Outline

Number representation problem

Overflow

® Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.

® No unsigned OF, no signed OF:

® Unsigned OF, no signed OF:

® Unsigned OF, positive OF:

® Unsigned OF, negative OF:

® No unsigned OF, positive OF:

® No unsigned OF, negative OF:

@ https://chimein.cla.umn.edu/course/view/2021

Overflow

® Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.

® No unsigned OF, no signed OF: 0000 + 0000 = 0000

® Unsigned OF, no signed OF:

® Unsigned OF, positive OF:

® Unsigned OF, negative OF:

® No unsigned OF, positive OF:

® No unsigned OF, negative OF:

® https://chimein.cla.umn.edu/course/view/2021

Overflow

@ Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.

® No unsigned OF, no signed OF: 0000 + 0000 = 0000

® Unsigned OF, no signed OF: 1111 + 0001 = 0000

® Unsigned OF, positive OF:

® Unsigned OF, negative OF:

® No unsigned OF, positive OF:

® No unsigned OF, negative OF:

@ https://chimein.cla.umn.edu/course/view/2021

Overflow

® Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.

® No unsigned OF, no signed OF: 0000 + 0000 = 0000

® Unsigned OF, no signed OF: 1111 + 0001 = 0000

® Unsigned OF, positive OF: can't happen

® Unsigned OF, negative OF:

® No unsigned OF, positive OF:

® No unsigned OF, negative OF:

@ https://chimein.cla.umn.edu/course/view/2021




Overflow

@ Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.

® No unsigned OF, no signed OF: 0000 + 0000 = 0000

® Unsigned OF, no signed OF: 1111 + 0001 = 0000

® Unsigned OF, positive OF: can't happen

® Unsigned OF, negative OF: 1000 + 1000 = 0000

® No unsigned OF, positive OF:

® No unsigned OF, negative OF:

@ https://chimein.cla.umn.edu/course/view/2021

Overflow

® Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.
® No unsigned OF, no signed OF: 0000 + 0000 = 0000
® Unsigned OF, no signed OF: 1111 + 0001 = 0000
® Unsigned OF, positive OF: can't happen
® Unsigned OF, negative OF: 1000 + 1000 = 0000
® No unsigned OF, positive OF: 0100 + 0100 = 1000
® No unsigned OF, negative OF:

® https://chimein.cla.umn.edu/course/view/2021

Overflow

® Which of these combinations can describe the

addition of the same bits? If possible, give an
example with 4-bit ints.
® No unsigned OF, no signed OF: 0000 + 0000 = 0000
® Unsigned OF, no signed OF: 1111 + 0001 = 0000
® Unsigned OF, positive OF: can't happen
® Unsigned OF, negative OF: 1000 + 1000 = 0000
® No unsigned OF, positive OF: 0100 + 0100 = 1000
® No unsigned OF, negative OF: can't happen

@ https://chimein.cla.umn.edu/course/view/2021

Outline

Topics in machine code

Instructions and operands

® Assembly language < machine code
® Sequence of instructions, encoded in bytes

® An instruction reads from or writes to operands

® x86: usually at most one memory operand
® AT&T: destination is last operand
® AT&T shows operand size with b/w/l/q suffix

Addressing modes

® General form: disp(base,index,scale)
® Displacement is any constant, scale is 1, 2, 4 or 8
® Base and index are registers
® Formula: mem[disp + base + index - scale]
® All but base are optional
® Missing displacement or index: O
® Missing scale: 1
® Drop trailing (but not leading) commas
® Do same computation, just put address in
register: lea




Flags and branches

@ Flags (aka condition codes) are set based on
results of arithmetic
® ZF: result is zero
® SF: result is negative (highest bit set)
® OF: signed overflow occurred
® CF: unsigned overflow (“carry”) occurred
@& Used for condition in:
® setCC: store 1or O
® cmovCC: copy or don't copy
® jCC: jump or don't jump
® Just for setting flags: cmp (like sub), test (like
and)

Outline

Machine code problems

Working with ordering

Which of these conditions are the same?
x < y X > y X <= y X >= y
y < x y > X y <= x y >= X
Ix<y) x>y !x<=y) !(x>y)
Iy <x) !(y >x) !(y <=x) !(y >=x)

Working with ordering

Which of these conditions are the same?
Col. 1 Col. 2 Col. 3 Col. 4

Ax<y Bx>y Cx<=y Dxo>y
y <x y > x y <= x y >= X
fx<y) x>y tx<=y &>y
Iy <x) !y >x) '(y<=x) !(y>x

https://chimein.cla.umn.edu/course/view/2021

Working with ordering

Which of these conditions are the same?

Col. 1 Col. 2 Col. 3 Col. 4
Dx >=y
Cy >= x
Di(x <y) Cl(x>y) Bl(x<=y) Al(x >=
Ci(y <x) DI(y >x) Al(y <=x) Bl(y >=

Ax <y Bx >y
By < x Ay > x

Cx <=y
Dy <= x

y)
x)




