Machine-Level Programming Ill:
Procedures

CSci 2021: Machine Architecture and Organization
October 1st-3rd, 2018
Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

These Slides

u Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data

Illustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack: Push

Stack “Bottom”

m pushqg Src ‘

= Fetch operand at Src

= Decrement $rsp by 8
= Write operand at address given by $rsp

Stack Pointer: $rsp__,
o)
Stack “Top”

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Increasing
Addresses

Stack
Grows
Down

Mechanisms in Procedures

m Passing control
® To beginning of procedure code
® Back to return point
m Passing data
= Procedure arguments
= Return value
= Memory management
= Allocate during procedure execution
= Deallocate upon return
m Mechanisms all implemented with
machine instructions
m X86-64 implementation of a procedure
uses only those mechanisms required

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack

Bi) {

y = 0(x);
| >ptint (3)
}

\ \

¥
int Q(int 1)

I~ return vit];

}

10/5/2018

Stack “Bottom”

= Region of memory managed
with stack discipline

m Grows toward lower addresses

m Register $rsp contains
lowest in-use stack address
= address of “top” element

Stack Pointer: $rsp —

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack: Pop

a2

Stack “Top”

Stack “Bottom”

m popqg Dest
® Read value at address given by $rsp
® Increment $rsp by 8
= Store value at Dest (must be register)

Stack Pointer: $rsp®E?

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

. 2

Stack “Top”

Increasing
Addresses

Stack
Grows
Down

Increasing
Addresses

Stack
Grows
Down

Today

u Procedures
" Stack Structure
= Calling Conventions
= Passing control
= Passing data

= Managing local data

lllustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Procedure Control Flow

m Use stack to support procedure call and return
m Procedure call: call label
® Push return address on stack
= Jump to label
u Return address:
= Address of the next instruction right after call
= Example from disassembly
m Procedure return: ret
= Pop address from stack
= Jump to address

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Control Flow Example #2

0000000000400540 <multstore>: atse °
. 0x128 .
. 0x120

400544: callg 400550 <mult2>
400549: mov $rax, ($rbx) < —0x118{ 0x400549

0000000000400550 <mult2>:
400550: mov %rdi,%rax € |

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10/5/2018

void multsto
Code Examples NEkde
long t =
*dest =

re
ng y, long *dest)

mult2(x, y);

0000000000400540 <multstore>:

400540: push Srbx # Save S$rbx
400541: mov $rdx, $rbx # Save dest
400544: callg 400550 <mult2> # mult2(x,y)
400549: mov $rax, ($rbx) # Save at dest
40054c: pop Srbx # Restore %rbx
40054d: retq # Return
long mult2 0000000000400550 <mult2>:
(long a, long b) 400550: mov $rdi, $rax # a
{ 400553: imul $rsi, $rax #a*b
long s = a * b; 400557: retq # Return
return s;
Bryant and O Halaron, Computer Systems: A Pogrammers Perspectie, Third Earian 8
Control Flow Example #1 .
0000000000400540 <multstore>: R °
. 0x128 o
° 0x120
400544: callg 400550 <mult2>
400549: mov %rax, (%rbx)
. $rsp

0000000000400550 <mult2>:
400550: mov

4rdi, srax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Control Flow Example #3

0000000000400540 <multstore>:

400544: callg 400550 <mult2>
400549: mov

0000000000400550 <mult2>:
400550: mov %$rdi, $rax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

orax, (3rbx) <} ——0x118 | 0x400549

%rip | 0x400544

0x130 .
0x128 .
0x120

Control Flow Example #4

0000000000400540 <multstore>:
400544: callg 400550 <mult2>
400549: mov $rax, (%rbx)\

0000000000400550 <mult2>:
400550: mov $rdi, $rax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Procedure Data Flow

Registers Stack
m First 6 arguments
grdi “Diane’s
brel silk
$rdx
dress
%rex
=0 costs
”
%r9 $8 ¢

-- Geoff Kuenning, HMC
= Return value

m Only allocate stack space

0x130 .
0x128 .
0x120

0x400549

Arg n

Arg 8
Arg7

when needed

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

= Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Interlude: binary-level GDB
= Managing local data

Illustrations of Recursion & Pointers

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10/5/2018

Today

m Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data
® lllustrations of Recursion & Pointers

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition "

void multstore
Data Flow (long x, long y, long *dest)
{
Examples long t = mult2(x, y);
*dest = t;
}

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx
400541: mov %$rdx, $rbx # Save dest
400544: callg 400550 <mult2> # mult2(x,y)
t in Srax

400549: mov %rax, ($rbx) # Save at dest
long mult2 0000000000400550 <mult2>:
(long a, long b) # a in %rdi, b in %rsi
{ 400550: mov $rdi, $rax # a
long s = a * b; 400553: imul %rsi,%$rax #a*b
return s; # s in %rax
} 400557: retq # Return
Bryant and O Ralaron, Comp A Programmar Perspecve, Tnra caman [
Announcements

m Exercise set 1 solutions set posted
= Probably will not turn back until after midterm, so look over the solutions
now
= Hands-on assignment 1 graded
= Grades will be on Moodle sherthy
® Moodle forum has a general feedback post
= Midterm 1 preparations
= Test will start promptly at 3:35pm on Monday, try to arrive at least a few
minutes before
= Two historical sample exams are on the course web site, solutions Friday
= Recommended writing implement is a mechanical pencil and a good eraser
= Friday in class will review material covered by the exam

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 18

10/5/2018

Overview: GDB without source code Disassembly and stepping
m GDB can also be used just at the instruction level m The disas command prints the disassembly of instructions
= Gi fi i faul fi ion, if availabl
e Binary-level GDB Give a function name, or defaults to current function, if available
= Or, supply range of addresses <start>, <end> or <start>, +<length>
step/next stepi/nexti = If you like TUl mode, “layout asm”
break <line number> break *<address> = Shortcut for a single instruction: x/i <addr>, x/i $rip
= disasm/r shows raw bytes too
list di o o .
s Lsas m stepi and nexti are like step and next, but for
print <variable> print with registers & casts instructions
print <data structure> examine - CamiER el S a el
® stepi goes into called functions, nexti stays in current one
info local info reg = continue, return, and £inish work as normal
software watch hardware watch
Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
Binary-level breakpoints Binary-level printing
u All breakpoints are actually implemented at the instruction m The print command still mostly uses C syntax, even when
level you don’t have source
® info br will show addresses of all breakpoints = Registers available with $ names, like $rax, $rip
= Sometimes multiple instructions correspond to one source location = Often want p/x, for hex
u To break at an instruction, use break *<address> m Use casts to indicate types
= Address usually starts with Ox for hex ®" p (char)$ril0
m The until commandis like a temporary breakpoint and a " p (char *)$rbx
continue m Use casts and dereferences to access memory
= Works the same on either source or binary =" p *(int *)$recx
" p *(char **)$r8
= p *((int*)$rbx + 1)
= p *(int*) ($rbx + 4)
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2
Examining memory More useful printing commands
m The examine (x) command is a low-level tool for printing m info reg prints contents of all integer registers, flags
memory contents ® InTUI: layout reg, will highlight updates
" No need to use cast notation ® Float and vector registers separate, or use info all-reg
m x/<format> <address> m info frame prints details about the current stack frame
® Format can include repeat count (e.g., for array) ® For instance, “saved rip” means the return address
= Many format letters, most common are x for hex or d for decimal m backtrace still useful, but shows less information

= Size letter b/h/w/g means 1/2/4/8 bytes
= Example: x/20xg 0x404100

= Prints first 20 elements of an array of 64-bit pointers, in hex

= Just return addresses, maybe function names

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 7 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition %

Hardware watchpoints

m To watch memory contents, use print-like syntax with

addresses
= watch *(int *)0x404170

= GDB’s “Hardware watchpoint” indicates a different

implementation

® Much faster than software

= But limited in number

= Limited to watching memory locations only

m Watching memory is good for finding memory corruption

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Stack-Based Languages

m Languages that support recursion
= e.g., C, Pascal, Java
® Code must be “Reentrant”

= Multiple simultaneous instantiations of single procedure
= Need some place to store state of each instantiation

= Arguments

» Local variables

= Return pointer
m Stack discipline

= State for given procedure needed for limited time

= From when called to when return
= Callee returns before caller does
u Stack allocated in Frames
= state for single procedure instantiation

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Stack Frames

u Contents
= Return information
= |ocal storage (if needed)
= Temporary space (if needed)

Stack Pointer: $rsp ——|

= Management
= Space allocated when enter procedure
= “Set-up” code, also called “prolog”
= Includes push by call instruction
® Deallocated when return
= “Finish” code, also called “epilog”
= Includes pop by ret instruction

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Frame Pointer: $rbp ——
(Optional)

Previous
Frame

Frame for
proc

Stack “Top”

Today

m Procedures
® Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data
® lllustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Call Chain Example

y0o0 (...)
{

* who (...)

who () ; {
} : ‘?mT().; ?mI(...)

amI () ; .
b amlI () ;
}

Procedure amI () is recursive

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo (...) yoo

-

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

%$rbp

$rsp—s

10/5/2018

Example
Call Chain

yoo

|

who

I

amI amI

|

amI

|

amI

Stack

yoo

Example

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Example

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

yoo

who

yoo

yoo

Stack

yoo
%rbp

who

$rsp—

Stack
yoo
who
amI

%rbp
amI
Srsp—

Stack
yoo
who
amI

%rbp
amI
$rsp———

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

who

amI

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Stack

10/5/2018

yoo
who
$rbp—
amI
$rsp—
2
Stack
yoo
who
amI
amI
$rbp
amI
$rsp——
u
Stack
yoo
who
$rbp—
amI
Srsp——
)

Stack
Example
yoo
l yoo
who
%rbp
who
$rSp—r
Sryant and O'Hallaron, Computer Systems: A rogrammers Perspective, Third Editon
Stack
Example
yoo
| yoo
who
%rbp
who
$rsp———
ryant and O'Hllaron, Computer Systers: A rogrammer's Perspective, Third Editon
x86-64/Linux Stack Frame
m Current Stack Frame (“Top” to Bottom)
= “Argument build:”
Parameters for function about to call Caller’s
®= Local variables e
B N . Arguments
If can’t keep in registers 74
" Saved register context Frame pointer Return Addr
= Old frame pointer (optional) $rbp. Old $rbp
(Optional)
Saved
u Caller Stack Frame Besliels
+
® Return address ocal
= Pushed by call instruction Variables
= Arguments for this call ATSTenE
Stack pointer B'f“d
$rsp—r (Optional)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

who

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

10/5/2018

Stack
yoo
who

$rbp—
amI
$rsp—
E
Stack
$rbp—
yoo
$rsp—

Bryant and O'Hallaron, Computer Systems: A rogrammer's Perspective, Third Edition “
Example: incr
long incr(long *p, long val) {
long x = *p;
long y = x + val;
*P =y
return x;
}
incr: N
movq (%rdi), %rax _ R
addq srax, $rsi $rdi rgument p
movq %rsi, (%rdi) $rsi Argument val, y
ret $rax x, Return value
@

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Calling incr #1

long call _incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return v1+v2;

Initial Stack Structure

Rtn address fe—— $rsp

call_incr:
subg $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leag 8(%rsp), %rdi
call incr
addq 8(%rsp), %rax
addg $16, %rsp
ret

Resulting Stack Structure

Rtn address

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Example: Calling incr #3

long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return vlt+v2;

call_incr:
subg $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addgq 8(%rsp), %rax
addgq $16, %rsp
ret

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

15213 |—— %rsp+8
Unused [«—— %rsp
Stack Structure
Rtn address
18213 |—— %rsp+8
Unused [«—— %rsp
[regiser el
$rdi &vl
%rsi 3000

Example: Calling incr #5

long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return vl+v2;

Updated Stack Structure

Rtn address f—— %rsp

call_incr:
subg $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addq 8(%rsp), %rax
addq $16, %rsp
ret

Fregiserusets |

$rax Return value

Final Stack Structure

l— %rsp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Calling incr #2

long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return vl+v2;

10/5/2018

Stack Structure

Rtn address

15213

l—— %$rsp+8

call_incr:
subgq $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi

Unused

l—— %Tsp

[negiier L) |

$rdi &vl
leaq 8(%rsp), %rdi]
call G $rsi 3000
addq 8(%rsp), %rax
addq $16, %rsp
ret
Sryant and O'allaron, Computer Systems: A Programmer’s Perspectiv, Thrd Eiton “
. . -
Example: Calling incr #4 . structure
long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return v1+v2; Rtn address
) 18213 |— %rsp+8
Unused |—— %rsp
call incr: =
suba $16, srsp [Register _Jusets) _____|
movq $15213, 8(%rsp) $rax Return value
movl $3000, %esi
leaq 8(%rsp), %rdi Updated Stack Structure
call incr
addgq 8 (%rsp), %rax
addq $16, %rsp
ret
Rtn address f—— %rsp
aryant and O'Halaron, Computer Systems: A Programmer’s Perspective, Third Editon ©
Register Saving Conventions
= When procedure yoo calls who:
= yoo is the caller
® who is the callee
m Can register be used for temporary storage?
yoo: who:
.« o P
movqg $15213, %rdx subq $18213, %rdx
call who o o
addqg %rdx, %$rax ret
“ e
ret
= Contents of register $rdx overwritten by who
= This could be trouble — something should be done!
= Need some coordination
Sryant and Oallaron, Computer Systerns: A rogrammer's Perspectiv, Third Editon “

Register Saving Conventions

u When procedure yoo calls who:

= yoo is the caller
= who is the callee

m Can register be used for temporary storage?

u Conventions
= “Caller Saved”, a.k.a. “scratch”

= Caller saves temporary values in its frame before the call

= “Callee Saved”, a.k.a. “preserved”

= Callee saves temporary values in its frame before using

= Callee restores them before returning to caller

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

x86-64 Linux Register Usage #2 (preserved)

m $rbx, $rl2, $rl3, $rl4
= Callee-saved
®= Callee must save & restore
m $rbp
®= Callee-saved
= Callee must save & restore
= May be used as frame pointer
= Can mix & match
m ¥rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

$rl2

call d
Temporaries

Special

Callee-Saved Example #2

Resulting Stack Structure

long call_incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

call_incr2:

pushg $rbx

subg $16, %rsp
movq %rdi, %rbx
movqg $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr

addq %rbx, %rax
addq $16, %rsp
Popq %rbx

ret

15213

l—— %rsp+8

Unused

«—— %rsp

Pre-return Stack Structure

Rtn address e—m srsp

jant and O'Hallaran, Comp! A Programmer's Perspective, Third Edition

x86-64 Linux Register

m $rax

® Return value

® Also caller-saved

= Can be modified by procedure
m %rdi, ..., $r9

= Arguments

= Also caller-saved

= Can be modified by procedure
= 3rl0, $rll

= Caller-saved

® Can be modified by procedure

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10/5/2018

Usage #1 (scratch)

Return value

$rdi

$rcx
%r8

%rl0
$rll

Caller-saved
temporaries

e

Callee-Saved Example #1

Initial Stack Structure

long call_incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address — grsp

call_incr2:

pushqg $rbx

subg $16, %rsp
movqg %$rdi, %rbx
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr

addgq %$rbx, %rax
addq $16, %rsp
PopPq $rbx

ret

Resulting Stack Structure

Rtn address

Saved $rbx
15213 |—— %rsp+8
Unused |—— %rsp

Today

m Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data
® lllustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function

pcount r:
movl $0, %eax
/* Recursive popcount */ testq %rdi, %rdi
long pcount_r(unsigned long x) { je .L6
if (x == 0) pushg %rbx
return 0; movq %rdi, %rbx
else andl $1, %ebx
return (x & 1) shrq %rdi
+ pcount_r(x >> 1); call pcount_r
} addq %$rbx, %rax
Popq $rbx
.L6:
rep; ret
Eryant and O'Hallaron, ComputerSystems: A Programmer's Perspective, Third Editon
Recursive Function Register Save
pcount_r:
/* Recursive popcount */ movl $0, %eax
long pcount r(unsigned long x) { testq %rdi, %rdi
if (x == 0) Jje -L6
return 0; pushg %rbx
else movqg %$rdi, %$rbx
return (x & 1) andl $1, %ebx
+ pcount_r(x >> 1); shrq $rdi
} call pcount_r
addq %rbx, %rax

PopPg %rbx
.L6:
rep; ret

I (T T

X Argument

Rtn address

Saved $rbx |—— %rsp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Call

/* Recursive popcount */ pcount r:
long pcount_r(unsigned long x) { movl $0, %eax
if (x == 0) testqg %$rdi, %rdi
return 0; je .L6
else pushg $rbx
return (x & 1) movqg %$rdi, %rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %rbx, %rax
POopPg %rbx

.L6:
er Jusel ___[voe [
%$rbx x &1 Callee-saved
%rax Recursive call

return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Terminal Case

/* Recursive popcount */ pcount_r:
long pcount r(unsigned long x) { movl $0, %eax
if (x == 0) testqg %rdi, %rdi
return 0; je .L6
else pushgq $rbx
return (x & 1) movq %rdi, %$rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %rbx, %rax
POPq $rbx

.L6:
N rep; ret
[Regiter Ul [t |
$rdi x Argument
$rax Return value Return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Call Setup

/* Recursive popcount */ pcount_r:
long pcount r(unsigned long x) { movl $0, %eax
if (x == 0) testqg %$rdi, %rdi
return 0; je .L6
else pushgq $rbx
return (x & 1) movq %rdi, %$rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %$rbx, %rax
PopPq %rbx
L6:

rep; ret
[Register useld [T |

$rdi x>> 1 Rec. argument

$rbx x &1 Callee-saved

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Result

/* Recursive popcount */ pcount _r:
long pcount r(unsigned long x) { movl $0, %eax
if (x == 0) testq %rdi, %$rdi
return 0; je .L6
else pushgq $rbx
return (x & 1) movq %$rdi, %rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %rbx, %rax
PopPq %rbx
L6:

N rep; ret
[Regiter [usels) [t |
$rbx x &1 Callee-saved
$rax Return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10/5/2018

10

Recursive Function Completion

pcount r:
/* Recursive popcount */ movl $0, %eax
long pcount r(unsigned long x) { testq %rdi, %rdi
if (x == 0) je L6
return 0; pushg %rbx
else movq %rdi, %$rbx
return (x & 1) andl $1, %ebx
+ pcount_r(x >> 1); shrq %rdi
} call pcount_r
addq %rbx, %rax

PopPq % rbx
.L6:
rep; retO

(regser Juses e]

$rax Return value Return value

l— $rsp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Discussion interlude

u Does a recursive function always have to save one or more
registers on the stack?
= If yes, why?
® If no, what’s an example of a function that doesn’t need to?

m Talk with your neighbors, then put your answer on Chimeln

https://chimein.cla.umn.edu/course/view/2021

Observations About Recursion

= Handled Without Special Consideration

= Stack frames mean that each function call has private storage

= Saved registers & local variables
= Saved return pointer

10/5/2018

= Register saving conventions prevent one function call from corrupting

another’s data

= Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)

= Stack discipline follows call / return pattern
= If P calls Q, then Q returns before P
= Last-In, First-Out

m Also works for mutual recursion
= Pcalls Q; Qcalls P

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Procedure Summary

= Important Points
= Stack is the right data structure for procedure call

/ return Caller
= If P calls Q, then Q returns before P EIEmeE
m Recursion (& mutual recursion) handled by
normal calling conventions
= Can safely store 'values in local stack frame and in (Opt:;l:ﬁ_.
callee-saved registers
= Put function arguments at top of stack
® Result return in $rax
m Pointers are addresses of values
= On stack or global
$rsp—

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Arguments
7+

Return Addr

0Old %rbp

Saved
Registers
+
Local
Variables

Argument
Build

11

https://chimein.cla.umn.edu/course/view/2021

