


```
oid multstore
Code Examples
                           (long x, long y, long *dest)
                              long t = mult2(x, y);
*dest = t;
      00000000000400540 <multstore>:
        400540: push
        400541: mov
                         %rdx,%rbx
                                           # Save dest
       400544: callq
                        400550 <mult2>
                                           # mult2(x, y)
        400549: mov
                         %rax,(%rbx)
       40054c: pop
40054d: retq
                        %rbx
                                           # Restore %rbx
                                           # Return
                     0000000000400550 <mult2>:
(long a, long b)
                       400550: mov
400553: imul
                                         %rdi,%rax
%rsi,%rax
                                                           # a * b
long s = a * b;
                       400557: retq
                                                          # Return
return s;
```


Today Procedures Stack Structure Calling Conventions Passing control Passing data Interlude: binary-level GDB Managing local data Illustrations of Recursion & Pointers

Announcements Exercise set 1 solutions set posted Probably will not turn back until after midterm, so look over the solutions now Hands-on assignment 1 graded Grades will be on Moodle shortly Moodle forum has a general feedback post Midterm 1 preparations Test will start promptly at 3:35pm on Monday, try to arrive at least a few minutes before Two historical sample exams are on the course web site, solutions Friday Recommended writing implement is a mechanical pencil and a good eraser Friday in class will review material covered by the exam

Overview: GDB without source code

■ GDB can also be used just at the instruction level

Binary-level GDB
stepi/nexti
break * <address></address>
disas
print with registers & casts
examine
info reg
hardware watch

Disassembly and stepping

- The disas command prints the disassembly of instructions
- Give a function name, or defaults to current function, if available
- Or, supply range of addresses <start> , <end> or <start> , +<length>
- If you like TUI mode, "layout asm"
- Shortcut for a single instruction: x/i <addr>, x/i \$rip
- disasm/r shows raw bytes too
- stepi and nexti are like step and next, but for instructions
 - Can be abbreviated si and ni
 - stepi goes into called functions, nexti stays in current one
 - continue, return, and finish work as normal

Bryant and O'Hallaron Computer Systems: A Programmer's Perspective. Third Edition

Binary-level breakpoints

- All breakpoints are actually implemented at the instruction level
 - info br will show addresses of all breakpoints
 - Sometimes multiple instructions correspond to one source location.
- To break at an instruction, use break *<address>
 - Address usually starts with 0x for hex
- The until command is like a temporary breakpoint and a continue
 - Works the same on either source or binary

Binary-level printing

- The print command still mostly uses C syntax, even when you don't have source
 - Registers available with \$ names, like \$rax, \$rip
 - Often want p/x, for hex
- Use casts to indicate types
 - p (char) \$r10
 - p (char *) \$rbx
- Use casts and dereferences to access memory
 - p *(int *)\$rcx
 - p *(char **)\$r8
 - p *((int*)\$rbx + 1)
 - p *(int*)(\$rbx + 4)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Examining memory

- The examine (x) command is a low-level tool for printing memory contents
 - No need to use cast notation
- x/<format> <address>
 - Format can include repeat count (e.g., for array)
 - Many format letters, most common are **x** for hex or **d** for decimal
 - Size letter b/h/w/g means 1/2/4/8 bytes
- Example: x/20xg 0x404100
 - Prints first 20 elements of an array of 64-bit pointers, in hex

.

More useful printing commands

- info reg prints contents of all integer registers, flags
 - In TUI: layout reg, will highlight updates
 - Float and vector registers separate, or use info all-reg
- info frame prints details about the current stack frame
 - For instance, "saved rip" means the return address
- backtrace still useful, but shows less information
- Just return addresses, maybe function names

Hardware watchpoints To watch memory contents, use print-like syntax with addresses watch *(int *)0x404170 GDB's "Hardware watchpoint" indicates a different implementation Much faster than software But limited in number Limited to watching memory locations only Watching memory is good for finding memory corruption


```
Recursive Function
                                             movl
                                                     $0, %eax
%rdi, %rdi
/* Recursive popcount */
                                             testq
long pcount_r(unsigned long x) {
  if (x == 0)
                                                      . 1.6
                                             pushq
                                                     %rbx
    return 0;
                                                     %rdi, %rbx
                                             movq
  9219
                                             andl
                                                     $1, %ebx
    return (x & 1)
                                            shrq
call
                                                     %rdi
            + pcount_r(x >> 1);
                                                     pcount_r
                                             addq
                                                     %rbx, %rax
                                            popq
                                                     %rbx
                                            rep; ret
```


