Floating Point

CSci 2021: Machine Architecture and Organization
September 21st, 2018

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Fractional binary numbers

= Whatis 1011.101,?

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Fractional Binary Numbers: Examples

u Value Representation
53/4 101.112
27/8 10.1112
17/16 1.01112

= Observations

Divide by 2 by shifting right (unsigned)

Multiply by 2 by shifting left

Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+..+1/2'+.. = 1.0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

m Background: Fractional binary numbers
u IEEE floating point standard: Definition
m Example and properties

= Rounding, addition, multiplication

u Floating pointin C

= Summary

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Fractional Binary Numbers

2i
2:—1
4
2
—1
‘ bi |bi-1| *** | b2 ‘ b1 ‘ bo b-1‘b-2‘ bs|eee b-j‘
12—
1/4 oee
1/8
= Representation 27
= Bits to right of “binary point” represent fractional powers of 2
= R ts rational number: 2
epresents rational number: Z by x 2
k=i

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2%
= Other rational numbers have repeating bit representations
= Value Representation
= 1/3 0.0101010101[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.0001100110011[0011]..2

m What if the number of bits is limited?
= “Fixed point”: just one setting of binary point within the w bits

= Limited range of numbers (bad for very small or very large values)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

9/20/2018

9/20/2018

Today: Floating Point IEEE Floating Point
[] m IEEE Standard 754
m |EEE floating point standard: Definition = Established in 1985 as uniform standard for floating point arithmetic
o = Before that, many idiosyncratic formats
= Supported by all major CPUs
[]
L] . .
m Driven by numerical concerns
" = Nice standards for rounding, overflow, underflow
= A lot of work to make fast in hardware
= Numerical analysts predominated over hardware designers in defining
standard
Sryant and O'Hallaron, Computer Systems: A rogrammers Perspective, Third Editon 7 Sryant and OHallaron, Computer Systems: A rogrammer's Perspectiv, Thrd Eiton 8
Floating Point Representation Precision options
u Numerical Form: m Single precision: 32 bits
(-1 m 2
= Sign bit s determines whether number is negative or positive | s |exp |frac |
= Significand M normally a fractional value in range [1.0,2.0). 1 8-bits 23-bits
= Exponent E weights value by power of two u Double precision: 64 bits
m Encoding | s |exp |frac |
- MSBfS ::SJ sign Z“ . | 1 11bits 52-bits
. . .
| TEEEIEs 5 ({2 5 ek Gael © B) m Extended precision: 80 bits (older Intel only)
= frac field encodes M (but is not equal to M)
| s |exp |frac |
| s |exp frac
1 15-bits 63 or 64-bits
Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9 Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10
“« . ” —1)s E . . = (—1)s 13
Normalized” (Normal) Values [v=(1)3M2 Normalized Encoding Example |v=(1)°M2
E = Exp — Bias
m When: exp # 000...0 and exp # 111...1 VeIl ez 5 = LPED.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213
m Exponent coded as a biased value: E = Exp — Bias
. ; 5 = Significand
Exp: unsigned value of exp field
e — . M = 1.1101101101101,
Bias = 2% - 1, where kis number of exponent bits frac= 11011011011010000000000,
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023) = Exponent
Eo= 13
e . . . Bias = 127
m Significand coded with implied leading 1: M = 1.xxx...x2 Exp = 140 = 10001100,
= xxx..x: bits of frac field
. = Result:
= Minimum when frac=000...0 (M = 1.0)
» Maximum when frac=111..1 (M =2.0—¢) [0][10001100]{11011011011010000000000]
= Get extra leading bit for “free” s exp frac
aryant and O'Hllron, Computer Systems: A rogrammer's Perspective, Third diton 1 Sryant and Oallaron, Computer Systerns: A rogrammer's Perspectiv, Third Editon n

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2
= xxx..x: bits of frac
m Cases
" exp =000..0, frac =000..0
= Represents zero value
= Note distinct values: +0 and -0 (why?)
" exp = 000..0, frac # 000..0
= Numbers closest to 0.0
= Equispaced

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Visualization: Floating Point Encodings

-I | -Normalized \“Denorm . |, .+Denorm | +Normalized Iw |
T T / T \ T LI
NaN
] 0 40 —

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Tiny Floating Point Example

| s | exp | frac |

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

= Same general form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

9/20/2018

Special Values

m Condition: exp=111..1

m Case:exp=111..1, frac=000..0

= Represents value o0 (infinity)

= Operation that overflows

= Both positive and negative

= E.g, 1.0/0.0 =-1.0/-0.0 = +0, 1.0/-0.0 = -0

m Case:exp=111..1, frac # 000..0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
" E.g., sqrt(-1), © - 00, 0 x 0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition "

Today: Floating Point

[|
-
= Example and properties
-
[|

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 16

Dynamic Range (Positive Only) | v=(-1)m2¢

s exp frac E Value n: E = Exp — Bias
0 0000 000 -6 0 d: E = 1— Bias
0 0000 001 -6 1/8*1/64 = 1/512 AR e
Denormalized © 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8%1/2 = 15/16 i
Normalized 0 0111 000 [8/8*1 =1
numbers 0 0111 001 [9/8*1 = 9/8 R locestonbore
0 0111 010 [10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8%128 = 240 largest norm
0 1111 000 n/a inf
Bryant and O'Hallaron, Computer ystems: A rogrammer's Prspective, Third Eiton [

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f=2 fraction bits | - | e | frac
" Biasis 2%%-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

8 values
-15 -10 5 0 5 10 15

& Denormalized A Normalized Infinity‘

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
® Must consider -0 =0

NaNs problematic

= Will be greater than any other values
= What should comparison yield?
Otherwise OK

= Denorm vs. normalized

= Normalized vs. infinity

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Floating Point Operations: Basic Idea

mx +s£ y = Round(x + y)
EX x¢ y = Round(x x y)

= Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £rac

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

9/20/2018

Distribution of Values (close-up view)

m 6-bit IEEE-like format
® e =3 exponent bits
= f =2 fraction bits | 8 | e | frac |
® Biasis 3 1 3-bits 2-bits

bbbk A A A G600 60 hhhhh—h—h—A—)
-1 -0.5 0 0.5 1
 Denormalized A Normalized B Infinily‘

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

[|
n
[|
= Rounding, addition, multiplication
[|

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Rounding

= Rounding Modes (illustrate with $ integer rounding)

[] $1.40 $1.60 $1.50 $2.50 -$1.50
= Towards zero $1 $1 $1 $2 -$1
= Round down () $1 $1 $1 $2 -$2
= Round up (+o0) $2 $2 $2 $3 -$1
= Nearest Even (default) $1 $2 $2 $2 52

= What are the different modes good for?
= Towards zero: compatible with C integer behavior
= Round down/up: maintain conservative intervals
= Nearest even: unbiased, minimal error

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly
= All others are statistically biased
= Sum of set of positive numbers will consistently be over- or under-
estimated

u Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition. S

FP and money: what went wrong?

= 0.0775 = 31/400 cannot be represented exactly in binary
® 400 is not a power of 2

m Actual representation with be like 0.0775 + €
® For single-precision, closest is 0.0775 + €

m 4.00 * (0.775+¢€) *100=31+€

= round_up(31+€) =32

u Similar problems can happen with double precision or other
rounding modes
= Real Minnesota law is a more complex rule

m Better choices:
= Store cents or smaller fractions as an integer, or
= Special libraries for decimal arithmetic

Floating Point Addition

u (12 M1 28! + (-1)2 M2 22
=Assume E1 > E2

Get binary points lined up
E1-E2

= Exact Result: (-1)° M 2

=Sign s, significand M: + (12 m2
= Result of signed align & add
=Exponent £: E1 | (-1 m |
u Fixing

=If M 2 2, shift M right, increment £

=if M < 1, shift M left k positions, decrement E by k
=Overflow if £ out of range

=Round M to fit £rac precision

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition £

9/20/2018

Exercise break: FP and money?

= Your sandwich shop uses single-precision floating point for
sales amounts

u Need to apply a Minneapolis sales tax of 7.75%, rounded up to
the nearest cent

= On $4.00 purchase, compute:
= round_up(4.00 * 0.0775 * 100) = 32 cents
= Correct tax is 31 cents

= What went wrong?

= Note: 0.0775 = 31/400 exactly
= Think about the answer first, then see the choices on Chimeln:
https://chimein.cla.umn.edu/course/view/2021

FP Multiplication

m (-1 M1 288 x (-1)2 M2 282
m Exact Result: (-1)°* M 2

= Sign s: s17s2

= Significand M: M1x M2

® Exponent E: E1+E2
u Fixing

= If M 2 2, shift M right, increment E
= If E out of range, overflow
® Round M to fit £rac precision

= Implementation
= Biggest chore is multiplying significands

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition »

Mathematical Properties of FP Add

m Compare to those of Abelian Group

= Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
= (3.14+1el10)-1e10 = 0, 3.14+(1lel0-1el0) = 3.14
= 0 is additive identity?
= Every element has additive inverse? Yes
= Yes, except for infinities & NaNs Almost
= Monotonicity
" axb = atc2b+c? Almost
= Except for infinities & NaNs

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 3

Mathematical Properties of FP Mult

m Compare to Commutative Ring

= Closed under multiplication? Yes
= But may generate infinity or NaN

= Multiplication Commutative? Yes

= Multiplication is Associative? No

= Possibility of overflow, inexactness of rounding

= Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
1is multiplicative identity? Yes

Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding
= 1e20* (1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 =NaN
= Monotonicity
"a2b &c20 >a*c2b*c? Almost
= Except for infinities & NaNs

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Floating Point in C

u C Guarantees Two Levels
="float single precision
="double double precision

m Conversions/Casting
= Casting between int, float, and double changes bit representation
= double/float > int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int - double
= Exact conversion, as long as int has < 53 bit word size
"int > float
= Will round according to rounding mode

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Summary

m |IEEE Floating Point has clear mathematical properties
= Represents numbers of form M x 2¢
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
= Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Floating Point

Floating point in C

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Floating Point Puzzles (full)

m For each of the following C expressions, either:

= Argue that it is true for all argument values
= Explain why not true

x ==
o 5=

int x = 0 8=

float £ = . cd=

double d = ..; c £=-(-1);
* 2/3 == 2/3.0

Assume neither +d<0.0

dnor £is NaN e d>f
°d*d> 0.0
° (d+f)-d = £

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Additional Slides

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

=
=

(int) (float) x
(int) (double) x
(float) (double) £
(double) (float) d

((d*2) < 0.0)
-£ > -d

9/20/2018

Creating Floating Point Number

m Steps | s | exp | frac
= Normalize to have leading 1

1 4-bits 3-bits
® Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111
Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition K
Rounding 1 .BBGRXXX

Guard bit: LSB of result _/ .
Sticky bit: OR of remaining bits
Round bit: 1%t bit removed

u Round up conditions
® Round =1, Sticky =1 — > 0.5
= Guard =1, Round = 1, Sticky = 0 — Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 4

Interesting Numbers {single,double}

Description exp frac Numeric Value
u Zero 00...00 00...00 0.0
m Smallest Pos. Denorm. 00..00 00..01 2-{2352 p-{126,1022}

= Single = 1.4x 10

= Double = 4.9 x 1032*

Largest Denormalized 00..00 11..11 (1.0 —) x 2-{126,1022}
= Single = 1.18 x 10738

= Double = 2.2 x 1073

Smallest Pos. Normalized 00..01 00...00 1.0 x 2~ {126,102}

= Just larger than largest denormalized
One 01.11 00..00 1.0

Largest Normalized 11..10 11..11 (2.0 — €) x 2{127,1023}
= Single = 3.4 x 10%®

= Double = 1.8 x 10%%

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition @

Normalize | s | exp | frac

. 1 4-bits 3-bits
= Requirement

= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
Sryant and OHallaron, Computer Systems: A rogrammer's Perspectiv, Thrd Eiton
Postnormalize
m Issue

® Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

9/20/2018

