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Fractional binary numbers

= Whatis 1011.101,?
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Fractional Binary Numbers: Examples

u Value Representation
53/4 101.112
27/8 10.1112
17/16 1.01112

= Observations

Divide by 2 by shifting right (unsigned)

Multiply by 2 by shifting left

Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+..+1/2'+.. = 1.0
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Today: Floating Point

m Background: Fractional binary numbers
u IEEE floating point standard: Definition
m Example and properties

= Rounding, addition, multiplication

u Floating pointin C

= Summary
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Fractional Binary Numbers
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= Representation 27
= Bits to right of “binary point” represent fractional powers of 2
= R ts rational number: 2
epresents rational number: Z by x 2
k=i
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Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2%
= Other rational numbers have repeating bit representations
= Value Representation
= 1/3 0.0101010101[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.0001100110011[0011]..2

m What if the number of bits is limited?
= “Fixed point”: just one setting of binary point within the w bits

= Limited range of numbers (bad for very small or very large values)
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Today: Floating Point IEEE Floating Point
[ ] m IEEE Standard 754
m |EEE floating point standard: Definition = Established in 1985 as uniform standard for floating point arithmetic
o = Before that, many idiosyncratic formats
= Supported by all major CPUs
[ ]
L] . .
m Driven by numerical concerns
" = Nice standards for rounding, overflow, underflow
= A lot of work to make fast in hardware
= Numerical analysts predominated over hardware designers in defining
standard
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Floating Point Representation Precision options
u Numerical Form: m Single precision: 32 bits
(-1 m 2
= Sign bit s determines whether number is negative or positive | s |exp |frac |
= Significand M normally a fractional value in range [1.0,2.0). 1 8-bits 23-bits
= Exponent E weights value by power of two u Double precision: 64 bits
m Encoding | s |exp |frac |
- MSBfS ::SJ sign Z“ . | 1 11bits 52-bits
. . .
| TEEEIEs 5 ({2 5 ek Gael © B) m Extended precision: 80 bits (older Intel only)
= frac field encodes M (but is not equal to M)
| s |exp |frac |
| s |exp frac
1 15-bits 63 or 64-bits
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“« . ” —1)s E . . = (—1)s 13
Normalized” (Normal) Values [v=(1)3M2 Normalized Encoding Example |v=(1)°M2
E = Exp — Bias
m When: exp # 000...0 and exp # 111...1 VeIl ez 5 = LPED.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213
m Exponent coded as a biased value: E = Exp — Bias
. ; 5 = Significand
Exp: unsigned value of exp field
e — . M = 1.1101101101101,
Bias = 2% - 1, where kis number of exponent bits frac= 11011011011010000000000,
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023) = Exponent
Eo= 13
e . . . Bias = 127
m Significand coded with implied leading 1: M = 1.xxx...x2 Exp = 140 = 10001100,
= xxx..x: bits of frac field
. = Result:
= Minimum when frac=000...0 (M = 1.0)
» Maximum when frac=111..1 (M =2.0—¢) [0][10001100]{11011011011010000000000]
= Get extra leading bit for “free” s exp frac
aryant and O'Hllron, Computer Systems: A rogrammer's Perspective, Third diton 1 Sryant and Oallaron, Computer Systerns: A rogrammer's Perspectiv, Third Editon n



Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2
= xxx..x: bits of frac
m Cases
" exp =000..0, frac =000..0
= Represents zero value
= Note distinct values: +0 and -0 (why?)
" exp = 000..0, frac # 000..0
= Numbers closest to 0.0
= Equispaced
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Visualization: Floating Point Encodings

-I | -Normalized \“Denorm . |, .+Denorm | +Normalized Iw |
T T / T \ T LI
NaN
] 0 40 —
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Tiny Floating Point Example

| s | exp | frac |

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

= Same general form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity
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Special Values

m Condition: exp=111..1

m Case:exp=111..1, frac=000..0

= Represents value o0 (infinity)

= Operation that overflows

= Both positive and negative

= E.g, 1.0/0.0 =-1.0/-0.0 = +0, 1.0/-0.0 = -0

m Case:exp=111..1, frac # 000..0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
" E.g., sqrt(-1), © - 00, 0 x 0
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Today: Floating Point

[ |
-
= Example and properties
-
[ |
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Dynamic Range (Positive Only) | v=(-1)m2¢

s exp frac E Value n: E = Exp — Bias
0 0000 000 -6 0 d: E = 1— Bias
0 0000 001 -6 1/8*1/64 = 1/512 AR e
Denormalized © 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8%1/2 = 15/16 i
Normalized 0 0111 000 [ 8/8*1 =1
numbers 0 0111 001 [ 9/8*1 = 9/8 R locestonbore
0 0111 010 [ 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8%128 = 240 largest norm
0 1111 000 n/a inf
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Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f=2 fraction bits | - | e | frac
" Biasis 2%%-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

8 values
-15 -10 5 0 5 10 15

& Denormalized A Normalized Infinity‘
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Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits =0

m Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
® Must consider -0 =0

NaNs problematic

= Will be greater than any other values
= What should comparison yield?
Otherwise OK

= Denorm vs. normalized

= Normalized vs. infinity
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Floating Point Operations: Basic Idea

mx +s£ y = Round(x + y)
EX x¢ y = Round(x x y)

= Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £rac
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Distribution of Values (close-up view)

m 6-bit IEEE-like format
® e =3 exponent bits
= f =2 fraction bits | 8 | e | frac |
® Biasis 3 1 3-bits 2-bits

bbbk A A A G600 60 hhhhh—h—h—A—)
-1 -0.5 0 0.5 1
 Denormalized A Normalized B Infinily‘
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Today: Floating Point

[ |
n
[ |
= Rounding, addition, multiplication
[ |
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Rounding

= Rounding Modes (illustrate with $ integer rounding)

[ ] $1.40 $1.60 $1.50 $2.50 -$1.50
= Towards zero $1 $1 $1 $2 -$1
= Round down () $1 $1 $1 $2 -$2
= Round up (+o0) $2 $2 $2 $3 -$1
= Nearest Even (default) $1 $2 $2 $2 52

= What are the different modes good for?
= Towards zero: compatible with C integer behavior
= Round down/up: maintain conservative intervals
= Nearest even: unbiased, minimal error
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Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly
= All others are statistically biased
= Sum of set of positive numbers will consistently be over- or under-
estimated

u Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
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FP and money: what went wrong?

= 0.0775 = 31/400 cannot be represented exactly in binary
® 400 is not a power of 2

m Actual representation with be like 0.0775 + €
® For single-precision, closest is 0.0775 + €

m 4.00 * (0.775+¢€) *100=31+€

= round_up(31+€) =32

u Similar problems can happen with double precision or other
rounding modes
= Real Minnesota law is a more complex rule

m Better choices:
= Store cents or smaller fractions as an integer, or
= Special libraries for decimal arithmetic

Floating Point Addition

u (12 M1 28! + (-1)2 M2 22
=Assume E1 > E2

Get binary points lined up
E1-E2

= Exact Result: (-1)° M 2

=Sign s, significand M: + (12 m2
= Result of signed align & add
=Exponent £:  E1 | (-1 m |
u Fixing

=If M 2 2, shift M right, increment £

=if M < 1, shift M left k positions, decrement E by k
=Overflow if £ out of range

=Round M to fit £rac precision
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Exercise break: FP and money?

= Your sandwich shop uses single-precision floating point for
sales amounts

u Need to apply a Minneapolis sales tax of 7.75%, rounded up to
the nearest cent

= On $4.00 purchase, compute:
= round_up(4.00 * 0.0775 * 100) = 32 cents
= Correct tax is 31 cents

= What went wrong?

= Note: 0.0775 = 31/400 exactly
= Think about the answer first, then see the choices on Chimeln:
https://chimein.cla.umn.edu/course/view/2021

FP Multiplication

m (-1 M1 288 x (-1)2 M2 282
m Exact Result: (-1)°* M 2

= Sign s: s17s2

= Significand M: M1x M2

® Exponent E: E1+E2
u Fixing

= If M 2 2, shift M right, increment E
= If E out of range, overflow
® Round M to fit £rac precision

= Implementation
= Biggest chore is multiplying significands
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Mathematical Properties of FP Add

m Compare to those of Abelian Group

= Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
= (3.14+1el10)-1e10 = 0, 3.14+(1lel0-1el0) = 3.14
= 0 is additive identity?
= Every element has additive inverse? Yes
= Yes, except for infinities & NaNs Almost
= Monotonicity
" axb = atc2b+c? Almost
= Except for infinities & NaNs
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Mathematical Properties of FP Mult

m Compare to Commutative Ring

= Closed under multiplication? Yes
= But may generate infinity or NaN

= Multiplication Commutative? Yes

= Multiplication is Associative? No

= Possibility of overflow, inexactness of rounding

= Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
1is multiplicative identity? Yes

Multiplication distributes over addition? No

= Possibility of overflow, inexactness of rounding
= 1e20* (1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 =NaN
= Monotonicity
"a2b &c20 >a*c2b*c? Almost
= Except for infinities & NaNs
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Floating Point in C

u C Guarantees Two Levels
="float single precision
="double double precision

m Conversions/Casting
= Casting between int, float, and double changes bit representation
= double/float > int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int - double
= Exact conversion, as long as int has < 53 bit word size
"int > float
= Will round according to rounding mode

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Summary

m |IEEE Floating Point has clear mathematical properties
= Represents numbers of form M x 2¢
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
= Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers
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Today: Floating Point

Floating point in C
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Floating Point Puzzles (full)

m For each of the following C expressions, either:

= Argue that it is true for all argument values
= Explain why not true

x ==
o 5=

int x = 0 8=

float £ = . cd=

double d = ..; c £=-(-1);
* 2/3 == 2/3.0

Assume neither +d<0.0

dnor £is NaN e d>f
°d*d> 0.0
° (d+f)-d = £
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Additional Slides
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=
=

(int) (float) x
(int) (double) x
(float) (double) £
(double) (float) d

((d*2) < 0.0)
-£ > -d
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Creating Floating Point Number

m Steps | s | exp | frac
= Normalize to have leading 1

1 4-bits 3-bits
® Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111
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Rounding 1 .BBGRXXX

Guard bit: LSB of result \_/ .
Sticky bit: OR of remaining bits
Round bit: 1%t bit removed

u Round up conditions
® Round =1, Sticky =1 — > 0.5
= Guard =1, Round = 1, Sticky = 0 — Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000
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Interesting Numbers {single,double}

Description exp frac Numeric Value
u Zero 00...00 00...00 0.0
m Smallest Pos. Denorm. 00..00 00..01  2-{2352 p-{126,1022}

= Single = 1.4x 10

= Double = 4.9 x 1032*

Largest Denormalized 00..00 11..11 (1.0 — ) x 2-{126,1022}
= Single = 1.18 x 10738

= Double = 2.2 x 1073

Smallest Pos. Normalized 00..01 00...00 1.0 x 2~ {126,102}

= Just larger than largest denormalized
One 01.11 00..00 1.0

Largest Normalized 11..10 11..11 (2.0 — €) x 2{127,1023}
= Single = 3.4 x 10%®

= Double = 1.8 x 10%%
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Normalize | s | exp | frac

. 1 4-bits 3-bits
= Requirement

= Set binary point so that numbers of form 1.xxxxx
= Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
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Postnormalize
m Issue

® Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64
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