
CSCI 2021, Fall 2018
Cache Lab: Understanding Cache Memories

Assigned: Wednesday, December 5, 2018
Due: Wednesday, December 12 11:55PM

Last Possible Time to Turn in: December 13 11:55PM

1 Logistics

This is an individual project. You must run this lab on a 64-bit x86-64 machine.

2 Overview

This lab will help you understand the impact that cache memories can have on the performance of your C
programs.

The lab consists of two parts. In the first part you will complete a small C program (about 200-300 lines)
that simulates the behavior of a cache memory. In the second part, you will optimize a small C function
function, with the goal of optimizing cache performance (e.g. minimizing the number of cache misses),
branch efficiency, and other performance techniques you have learned.

3 Downloading the assignment

The handout tarball is located at
/web/classes/Fall-2018/csci2021-010/ha/5/ha5-handout.tar

Start by copying ha5-handout.tar to a protected Linux directory in which you plan to do your work.
Then give the command

linux> tar xvf ha5-handout.tar

This will create a directory called ha5-handout that contains a number of files. You will be modifying
two files: csim.c and encoder.c. To compile these files, type:

1

linux> make clean
linux> make

4 Description

The lab has two parts. In Part A you will complete the implementation of a cache simulator. In Part B you
will optimize the program for cache performance.

4.1 Reference Trace Files

The traces subdirectory of the handout directory contains a collection of reference trace files that we will
use to evaluate the correctness of the cache simulator you write in Part A. The trace files are generated by a
Linux program called valgrind. For example, typing

linux> valgrind --log-fd=1 --tool=lackey -v --trace-mem=yes ls -l

on the command line runs the executable program “ls -l”, captures a trace of each of its memory accesses
in the order they occur, and prints them on stdout.

Valgrind memory traces have the following form:

I 0400d7d4,8
M 0421c7f0,4
L 04f6b868,8
S 7ff0005c8,8

Each line denotes one or two memory accesses. The format of each line is

[space]operation address,size

The operation field denotes the type of memory access: “I” denotes an instruction load, “L” a data load,
“S” a data store, and “M” a data modify (i.e., a data load followed by a data store). There is never a space
before each “I”. There is always a space before each “M”, “L”, and “S”. The address field specifies a 64-bit
hexadecimal memory address. The size field specifies the number of bytes accessed by the operation.

4.2 Part A: Writing a Cache Simulator

In Part A you will write a cache simulator in csim.c that takes a valgrind memory trace as input,
simulates the hit/miss behavior of a cache memory on this trace, and outputs the total number of hits, misses,
and evictions. Much of the simulator has already been written so your task is to complete the program.

We have provided you with the binary executable of a reference cache simulator, called csim-ref, that
simulates the behavior of a cache with arbitrary size and associativity on a valgrind trace file. It uses the
LRU (least-recently used) replacement policy when choosing which cache line to evict.

The reference simulator takes the following command-line arguments:

2

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile>

• -h: Optional help flag that prints usage info

• -v: Optional verbose flag that displays trace info

• -s <s>: Number of set index bits (S = 2s is the number of sets)

• -E <E>: Associativity (number of lines per set)

• -b : Number of block bits (B = 2b is the block size)

• -t <tracefile>: Name of the valgrind trace to replay

The command-line arguments are based on the notation (s, E, and b) from page 597 of the CS:APP2e
textbook. For example:

linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 misses:5 evictions:3

The same example in verbose mode:

linux> ./csim-ref -v -s 4 -E 1 -b 4 -t traces/yi.trace
L 10,1 miss
M 20,1 miss hit
L 22,1 hit
S 18,1 hit
L 110,1 miss eviction
L 210,1 miss eviction
M 12,1 miss eviction hit
hits:4 misses:5 evictions:3

Your job for Part A is to fill in the csim.c file so that it takes the same command line arguments and
produces the identical output as the reference simulator.The current cache simulator is missing the function-
ality for the functions freeCache, accessData, and a portion of the main function. Knowing what you
know about how cache works, it is your job to complete these functions such that they produce the same
thing that the reference file does.

Programming Rules for Part A

• Include your name and loginID in the header comment for csim.c.

• Your simulator must work correctly for arbitrary s, E, and b. This means that you will need to
allocate storage for your simulator’s data structures using the malloc function. Type “man malloc”
for information about this function.

3

• For this lab, we are interested only in data cache performance, so your simulator should ignore all
instruction cache accesses (lines starting with “I”). Recall that valgrind always puts “I” in the first
column (with no preceding space), and “M”, “L”, and “S” in the second column (with a preceding
space). This may help you parse the trace.

• To receive credit for Part A, you must call the function printSummary, with the total number of
hits, misses, and evictions, at the end of your main function:

printSummary(hit_count, miss_count, eviction_count);

• For this this lab, you should assume that memory accesses are aligned properly, such that a single
memory access never crosses block boundaries. By making this assumption, you can ignore the
request sizes in the valgrind traces.

4.3 Part B: Program Optimization

Your job in part B is to optimize the procedure analyze, any sub-procedures, and data structures in the file
encoder.c. Currently, it is written in such a way that it does not take advantage of the cache to decrease
the run-time. It is up to you to identify the areas of the function that could be improved using optimizations
you have learned during lecture (reducing unnecessary calls to procedures, removing aliasing, alignment,
etc.).

The encoder program computes the average of some data and prints the result to stdout. It also performs
some string operations (an ”encoding”) and writes that result to the file output.txt. The data is defined
in data.o, but is otherwise hidden from view.

NOTE: You will not be allowed to change the function so that it ruins the generality of the program. For
instance, if the program were designed to give a specific value on certain input, you cannot simply change
the function so that it returns the value that it expects. To account for this, we will be testing your updated
program against different sets of data in order to grade the correctness of your program.

Programming Rules for Part B

• Your code must return the correct value and write the correct output file to receive credit.

• Your code should utilize cache-based optimizations.

• Do not change any code in main or setupDocuments. All other code is fair game.

5 Evaluation

This section describes how your work will be evaluated. The full score for this lab is 100 points:

• Part A: 45 Points

• Part B: 55 Points

4

5.1 Evaluation for Part A

For Part A, we will run your cache simulator using different cache parameters and traces. There are eight
test cases, each worth 5 points, except for the last case, which is worth 10 points:

linux> ./csim -s 1 -E 1 -b 1 -t traces/yi2.trace
linux> ./csim -s 4 -E 2 -b 4 -t traces/yi.trace
linux> ./csim -s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./csim -s 2 -E 1 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 2 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 4 -b 3 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/long.trace

You can use the reference simulator csim-ref to obtain the correct answer for each of these test cases.
During debugging, use the -v option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cache hits, misses and evictions will give you full credit
for that test case. Each of your reported number of hits, misses and evictions is worth 1/3 of the credit
for that test case. That is, if a particular test case is worth 3 points, and your simulator outputs the correct
number of hits and misses, but reports the wrong number of evictions, then you will earn 2 points.

5.2 Evaluation for Part B

For Part B, we will evaluate the correctness and performance of the function that you will optimize. 55
points are possible To get a sense of the score that you will receive on part B of this assignment, the
compute performance.sh script is provided for you. Run it with your encode binary as an argument
and it will compute the estimated number of cycles (CEST). Your performance score for Part B will be
determined by comparing your CEST score against a series of solutions. For example the CEST score for
encoder without any optimizations:

linux> make encoder
linux> ./compute_performance.sh encoder
24623636

Your score for Part B will be zero if your optimizations change the program output or the content of the
file output.txt. A python module correct.py is included to automatically assess the correctness of
your program. The copy of encoder.c you received is correct. Run the module with your program as an
argument:

linux> ./correct.py encoder
Correct

The more you optimize the program, the more points you will receive on Part B. Full points will be awarded
to programs that produce CEST≤1244182, and fewer points depending on where they fall in comparison

5

to a sequence of partial solutions. Programs that acheive 759000≤CEST<1244182 will be rewarded by up
to 10 points extra credit. The included driver.py program to see how many points your CEST score is
worth:

linux> ./driver.py
...
Part B: Testing program optimization
Testing encoder output for correctness...
Running encoder through valgrind and computing cycles...

Correct 1
CEST 24623636
Performance Points 0

...

NOTE: There may be a slight difference between the CEST calculated by driver.py and
compute performance.sh, but the former will be used in the final grading.

6 Working on the Lab

6.1 Working on Part A

We have provided you with an autograding program, called test-csim, that tests the correctness of your
cache simulator on the reference traces. Be sure to compile your simulator before running the test:

linux> make
linux> ./test-csim

Your simulator Reference simulator
Points (s,E,b) Hits Misses Evicts Hits Misses Evicts

3 (1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace
3 (2,1,4) 2 3 1 2 3 1 traces/dave.trace
3 (2,1,3) 167 71 67 167 71 67 traces/trans.trace
3 (2,2,3) 201 37 29 201 37 29 traces/trans.trace
3 (2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 0 traces/trans.trace
6 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace

27

For each test, it shows the number of points you earned, the cache parameters, the input trace file, and a
comparison of the results from your simulator and the reference simulator.

Here are some hints and suggestions for working on Part A:

• Do your initial debugging on the small traces, such as traces/dave.trace.

• The reference simulator takes an optional -v argument that enables verbose output, displaying the
hits, misses, and evictions that occur as a result of each memory access. You are not required to

6

implement this feature in your csim.c code, but we strongly recommend that you do so. It will
help you debug by allowing you to directly compare the behavior of your simulator with the reference
simulator on the reference trace files.

• Each data load (L) or store (S) operation can cause at most one cache miss. The data modify operation
(M) is treated as a load followed by a store to the same address. Thus, an M operation can result in
two cache hits, or a miss and a hit plus a possible eviction.

6.2 Working on Part B

Here are some hints and suggestions for working on Part B.

• Profile the program to see where the most optimization work will be needed. Finding where the most
time is spent in a program will focus your efforts.

• Don’t try to rewrite the entire program. You are only required to optimize the current version of the
program.

• First, find the small things that you could optimize and then work your way up to optimizing larger
portions of the code.

• Think of how memory is layout out when you are trying to read it, i.e how can you read something
like a matrix more efficiently to utilize cache.

6.3 Putting it all Together

We have provided you with a driver program, called ./driver.py, that performs a complete evaluation
of your simulator and encoder code. This is the same program your instructor uses to evaluate your handins.
The driver uses test-csim to evaluate your simulator, and it measures the CEST of the encoder with
compute performance. To run the driver, type:

linux> ./driver.py

7 Handing in Your Work

Each time you type make in the ha5-handout directory, the Makefile creates a tarball, called userid-handin.tar,
that contains your current csim.c and encoder.c files. Do not rename these files.

Upload your userid-handin.tar on moodle before the due date.

IMPORTANT: Do not create the handin tarball on a Windows or Mac machine, and do not handin files in
any other archive format, such as .zip, .gzip, or .tgz files.

7

