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• This exam contains 6 pages (including this cover page) and 4 questions. Once we tell you to start,
please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but don’t
open the exam until you are directed to start. Don’t put any of your answers on this page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not use any
electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TAs, but no communication with other students
is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade what
you write on the exam, so it’s in your interest to show your work and explain your thinking.

• Students often find that the quiz questions vary in difficulty. Your best strategy is usually to skim over
all the questions, and then start working on the ones that look easiest. We also suggest that you leave
time at the end to attempt every question, since we can’t give you any partial credit if you leave a
question blank.

• By signing below you certify that you agree to follow the rules of the exam, not to share exam material
with other students before their exams, and that the answers on this exam are your own work only.

The exam will end promptly at 4:25pm. Good luck!
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1. (30 points) Y86-64 instruction design.

In this question you’ll design the hardware for a new Y86-64 instruction in the sequential (SEQ) imple-
mentation. The new instruction is the register indirect call instruction “rcall *rA”. This is similar to
an x86-64 instruction like call *%rax, and would be used by a C compiler to implement calling a
function pointer. Like a normal call it saves the address of the following instruction as a return address
by pushing it on the stack, but instead of the address of the function to then jump to being fixed, the
address comes from the register rA. The instruction is two bytes long, with an opcode byte of 0x81 and
a register specifier byte giving rA, and with 0xF in the rB position.

Fill in the following table with what operations need to be performed in each of the stages of the SEQ
implementation when the instruction is rcall. You may not need to put operations in every box.

rcall * rA

Fetch

Decode

Execute

Memory

Write back

PC update

Use the same notation that we did for the existing Y86-64 instructions, with← for giving a value to a
signal, R[. . . ] for the register file, and Ms[. . . ] for a memory access of size s. Choose the signals you
compute from the following:

Stage computed in Signals
Fetch icode, ifun, rA, rB, valC, valP
Decode srcA, srcB, dstE, dstM, valA, valB
Execute valE, Cnd
Memory valM
Anywhere appropriate R[. . . ], Ms[. . . ], PC
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2. (20 points) Data dependencies.

The listing below shows a sequence of Y86-64 instructions from a time-critical part of a program. There
are five data dependencies between instructions in this sequence, through registers. Fill in the blanks
with details about 5 dependencies: give the number of which instruction (higher numbered) depends on
which previous instruction (lower numbered) via which Y86-64 register (that they both access). We’ve
already filled in one for you.

iaddq $8, %r8 # Instruction 1
mrmovq 8(%rax), %rbx # Instruction 2
addq %rbx, %rbx # Instruction 3
subq %r8, %rbx # Instruction 4
rrmovq %rbx, %rcx # Instruction 5
rmmovq %rcx, 24(%rax) # Instruction 6

1. Instruction # 4 depends on # 3 via register %rbx

2. Instruction # depends on # via register

3. Instruction # depends on # via register

4. Instruction # depends on # via register

5. Instruction # depends on # via register

Only one of these dependencies is a load-use hazard that will hurt the performance of the code when
running on our pipelined Y86-64 implementation (with forwarding). Mark which dependency is a load-
use hazard, by circling its number 1-5.

You can make the code run faster without changing its behavior by rearranging the instructions so that
the load-use hazard does not require stalling. Fill in the blanks in the following description:

To avoid load-use stalling, move instruction number to the position immediately after

the current instruction number .
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3. (30 points) Data cache operations.

For this question we consider the memory system of a small embedded processor. The size of the
physical address space is 4K bytes, and the memory is byte-addressable. The single-level cache is
3-way set associative, with a 2-byte block size and 24 total lines.

In the following table, all numbers are given in hexadecimal. The content of the cache is as follows
(V = Valid, B0 = Byte 0, B1 = Byte 1):

3-way set associative cache
Index Tag V B0 B1 Tag V B0 B1 Tag V B0 B1

0 29 1 33 5D 4E 1 4A EA 94 0 5A 18
1 E3 1 14 4D 7C 0 C6 36 A9 1 74 4E
2 1A 1 36 38 D4 1 F2 7D F3 1 4C 3A
3 56 1 F7 74 05 1 ED BE 52 0 56 68
4 47 0 21 9A 79 0 A2 34 94 1 D7 51
5 0A 1 3C 39 D8 1 11 6B EF 1 FD 01
6 89 0 22 E2 3B 1 3A 86 33 1 35 65
7 32 0 1A 3B 15 1 D8 19 50 1 76 50

(a) Please indicate, by labeling the following diagram, the fields in an address that would be used to
determine the following:

CO The cache offset
CI The cache set index

CT The cache tag

(b) For the given physical address, 0xF35, indicate the cache entry accessed and the cache byte value
returned in hex. Indicate whether a cache miss occurs. If there is a cache miss, enter “unknown”
for “Cache Byte Returned”.
First, write the physical address in the same format as above, putting one bit per box:

Then, compute the following parameters of the cache access:

Parameter Value

Cache Offset (CO) 0x

Cache Index (CI) 0x

Cache Tag (CT) 0x

Cache Hit? (Y/N)

Cache Byte Returned 0x
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(c) Counting the cache blocks as well as the tags and the valid bits, what is the total size of this cache
in bits? (Please use decimal for the rest of this question.)

(d) The L3 cache of a computer has a hit time of 15 cycles and a miss penalty of 300 cycles. Suppose
that the hit rate for this cache, for a given application, is 95%. Considering just this cache, what is
the average memory access time in cycles? (Recall that average memory access time = hit time +
miss rate× miss penalty)

Suppose we can improve the hit rate of the application to 98%. What is the new average memory
access time?

4. (20 points) Optimizing cache usage.

You are designing a meal plan for a small university’s dormitory, Gopher Hall. It has 4 floors with 8
rooms on each floor. The software will run on a machine with a 256-byte direct-mapped data cache
with 32-byte blocks. You are implementing a prototype of your software that records the meal expenses
(Breakfast, Lunch and Dinner) for each student in the dormitory each day. The C structures you are
using are:

struct meal_expenses {
float BLD_meals[3];
int student_ID;

};

struct meal_expenses Gopher_Hall[4][8];
int i, j, k;

You have to decide between two alternative implementations of the routine that initializes the array
Gopher_Hall. You want to choose the one with the better cache performance. You can assume:

• sizeof(int) = 4

• Gopher_Hall begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array Gopher_Hall.

• Variables i, j and k are stored in registers.
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(a) What percentage of the writes in the following initialization code will miss in the cache?

for (i=0; i<4; i++){
for (j=0; j<8; j++) {

Gopher_Hall[i][j].student_ID = 0;
}

}
for (i=0; i<4; i++){

for (j=0; j<8; j++) {
for (k=0; k<3; k++) {

Gopher_Hall[i][j].BLD_meals[k] = 0;
}

}
}

Total number of misses in the first loop:

Total number of misses in the second loop:

Overall miss rate for writes to Gopher_Hall:

(b) What percentage of the writes in the following code will miss in the cache?

for (i=0; i<4; i++){
for (j=0; j<8; j++) {

for (k=0; k<3; k++) {
ground_crew[i][j].BLD_meals[k] = 0;

}
Gopher_Hall[i][j].student_ID=0;

}
}

Miss rate for writes to Gopher_Hall is:
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