
CSci 2021 Section 010
Fall 2018
Midterm Exam 2 (solutions)
November 16th, 2018
Time Limit: 50 minutes, 3:35pm-4:25pm

• This exam contains 9 pages (including this cover page) and 4 questions. Once we tell you to start,
please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but don’t
open the exam until you are directed to start. Don’t put any of your answers on this page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not use any
electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TAs, but no communication with other students
is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade what
you write on the exam, so it’s in your interest to show your work and explain your thinking.

• Students often find that the questions vary in difficulty. Your best strategy is usually to skim over all
the questions, and then start working on the ones that look easiest. We also suggest that you leave
time at the end to attempt every question, since we can’t give you any partial credit if you leave a
question blank.

• By signing below you certify that you agree to follow the rules of the exam, not to share exam material
with other students before their exams, and that the answers on this exam are your own work only.

The exam will end promptly at 4:25pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Sign and date:

Question Points Score

1 24

2 31

3 25

4 20

Total: 100

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 2 of 9 November 16th, 2018

1. (24 points) Unexpected instructions.

In the left column are 12 x86-64 instructions. In the right column are 12 C statements containing
long variables named after registers. Match each instruction with the C code that describes its effect,
assuming that each variable is held in the register with the same name. But don’t expect to be able to
tell just by comparing instruction names with the C operators.

Each choice on the right should be used the same number of times it appears: i.e., choices A, G, and I
are used twice each, and the others once each.

(a) E lea (%rax, %rax, 8), %rdx

(b) A and $0, %rdx

(c) I lea 0(%rdx), %rdx

(d) B lea (%rax, %rdx), %rdx

(e) I mov %rdx, %rdx

(f) H sar $63, %rdx

(g) G shl $2, %rdx

(h) F add %rdx, %rdx

(i) G lea (,%rdx, 4), %rdx

(j) A xor %rdx, %rdx

(k) C lea -1(%rax, %rax), %rdx

(l) D lea (%rax, %rax, 2), %rdx

A. rdx = 0

A. rdx = 0

B. rdx += rax

C. rdx = 2*rax - 1

D. rdx = 3*rax

E. rdx = 9*rax

F. rdx = rdx << 1

G. rdx = 4*rdx

G. rdx = 4*rdx

H. rdx = rdx < 0 ? -1 : 0

I. /* does nothing */

I. /* does nothing */

Fully half of the instructions are lea, which shows the variety of computations it can be used for.
Each of the lea examples can be figured out by plugging into the addressing mode formula and then
simplifying: for instance for (a), rax + 8*rax = 9*rax. ANDing with 0 or XORing a value with
itself both always give 0, so (b) and (j) are A; (j) is the instruction that compilers often use because
the lack of an immediate allows it to be short. (c) and (e) both copy %rdx back to itself, which is a
no-op. (f) uses a sign extending right shift to copy the sign bit to every position in the register, which is
H: you may have used this operation in the HA2. (g) does not match with F, even though they are both
left shifts, because the shift amount is different. Instead shifting left by two is like multiplying by 4, and
shifting left by one, which is like multiplication by 2, is the same as adding a register to itself (i.e., F).

Page 2

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 3 of 9 November 16th, 2018

2. (31 points) Machine code and arrays.

Below is the assembly code for a function named check. On the next page, along with another copy
of the assembly, is the outline of C code for the function, with many parts left blank. Fill in the blanks
in the C code to create a function that does the same thing as the assembly code, in other words what
might have been the source code compiled to create this assembly code. Use the macro SIZE in code
related to the size of the arrays, so that the source code could also be used if the array size changed.

Note that in several places the structure of the assembly code does not directly match the source code:
for instance the source code has one parameter and four local variables, whereas the assembly code uses
a different number of registers. There are multiple possible correct answers, based on different ways of
writing the same functionality.

This code does something meaningful, but you don’t need to understand the meaning to complete the
question.

The memset function is declared as:

void *memset(void *s, int c, size_t n);

It fills in an n-byte memory area pointed to by s with the byte value c, and returns the pointer s.

The instruction incq adds 1 to its operand, while the instruction decq subtracts 1. Both instructions
set the condition code flags based on the result.

Page 3

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 4 of 9 November 16th, 2018

check:

 pushq %rbx

 movl $100, %edx

 movq %rdi, %rbx

 xorl %esi, %esi

 movq $flags, %rdi

 call memset

 xorl %eax, %eax

.L4:

 movq (%rbx,%rax,8), %rdx

 cmpq $99, %rdx

 jbe .L2

.L6:

 xorl %eax, %eax

 jmp .L3

.L2:

 incq %rax

 movb $1, flags(%rdx)

 cmpq $100, %rax

 jne .L4

 movl $100, %edx

 xorl %eax, %eax

.L5:

 orb $0x80, flags(%rax)

 decq %rdx

 movq (%rbx,%rax,8), %rax

 jnz .L5

 xorl %eax, %eax

.L7:

 cmpb $0x81, flags(%rax)

 jne .L6

 incq %rax

 cmpq $100, %rax

 jne .L7

 movl $1, %eax

.L3:

 popq %rbx

 ret

#define SIZE 100
unsigned char flags[SIZE];
long check(long a[SIZE]) {

long i1, i2, i3, j;

memset(flags, 0 , SIZE);

for (i1 = 0; i1 != SIZE; i1++) {
if (a[i1] < 0 || a[i1] > SIZE - 1)

return 0;
flags[a[i1]] = 1;

}
j = 0;

for (i2 = 100; i2 != 0; i2--) {
flags[j] |= 0x80;
j = a[j];

}

for (i3 = 0; i3 != SIZE; i3++) {
if (flags[i3] != 0x81)

return 0;
}
return 1;

}

The arrows we’ve drawn on the assembly code show the structure of the three main for loops and
the if statement in the first for loop. Since label L3 is the end of the function, L6 which zeros-out
%eax and then jumps to L3 is the code for return 0. The arguments to memset are set up by the
instructions right before the call, following the usual calling convention. %rbx is used to save a copy
of the argument a because %rdi might be modified by memset. There are several equivalent ways
to write the for loops. The first and third loops both count up, it would also work to use < SIZE
as the condition. For the second loop the code above shows a literal translation of what the compiler
generated, but because the loop counter (which could also be i1 or i3, though i2 seems logical) isn’t
used in the body of the loop, you could also count up like the other loops, and in fact that’s what our
original code did. There are a number of array operations here, and you have to keep the two arrays
a and flags separate: a has its base address in %rbx and multiplies the index by 8 because it is an
array of longs, while flags has just the address of the global (which will be assembled as a constant)
as the base and a scale of 1. In the if statement inside the first loop we check whether a signed value
is negative or too large, but the compiler optimized this into a single equivalent unsigned comparison,
because negative values correspond to large unsigned values. In the first loop, %rax corresponds to
i1 and %rdx to a[i1], so notice this means we used two levels of array access in the assignment of 1.
By contrast in the second loop %rdx is i2 while %rax holds j; and in the third loop i3 is in %rax.

Page 4

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 5 of 9 November 16th, 2018

3. (25 points) Stack layout.

For this question, consider the following C code, with some of the corresponding assembly code to the
right:

long f1(long x) {
long l1 = 1;
long l2 = 2;
long l3 = x;
return l1 + l2 + l3;

}

void f2(long x) {
char local[8];
if (x & 1) {

local[0] = 0;
}
printf("You won ");
if (local[0])

printf("%.8s\n", local);
else

printf("nothing.\n");
}

int main(void) {
long input;
/* ... */
f1(input);
f2(input);
/* ... */

}

f1:
subq $0x28, %rsp
movq %rdi, 0x10(%rsp)
movq $1, 0x20(%rsp)
movq $2, 0x18(%rsp)
movq 0x10(%rsp), %rax

here (a)
addq $3, %rax
addq $0x28, %rsp
ret

f2:
subq $0x28, %rsp
movq %rdi, %rax
andl $1, %eax
testq %rax, %rax
je .L4
movb $0, 0x10(%rsp)

here (b)
.L4: # ...
ret

main:
... input in %rbx
here %rsp is 0x7fffffff0030
mov %rbx, %rdi
call f1
mov %rbx, %rdi
call f2

Comments containing ... indicate places where we have left out code to simplify what you have to
look at.

Assume that before the call to f1, the value of the stack pointer %rsp is 0x7fffffff0030. The
questions on the next page will ask you about the contents of the stack during the execution of f1 and
f2. For those questions:

• Fill in a box with an exact numeric value if you know it, in either decimal or hexadecimal with
0x.

• If you know some but not all digits of a number, you can write question marks in place of the
unknown digits.

• Write “Return address for function” for the return address of a call to a function function.

• If there is no way to know the contents of a location from the information we have provided, write
“unknown” or leave the box blank.

The printf format specifier %.8s is like a regular “%s”, except that it will never print more than 8
characters of the string.

Page 5

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 6 of 9 November 16th, 2018

(a) Suppose that the value of the variable input is 7. Fill in the blanks in the following table to show
the contents for the stack at the point labeled “here (a)” inside f1:

Address Contents

0x7fffffff0030 Return address for main

0x7fffffff0028 Return address for f1

0x7fffffff0020 1

0x7fffffff0018 2

0x7fffffff0010 7

0x7fffffff0008 unknown

0x7fffffff0000 unknown

(b) Still for a run with input equal to 7, fill in the following table to show the contents of the stack at
the point labeled “here (b)” inside f2:

Address Contents

0x7fffffff0030 Return address for main

0x7fffffff0028 Return address for f2

0x7fffffff0020 1

0x7fffffff0018 2

0x7fffffff0010 0

0x7fffffff0008 unknown

0x7fffffff0000 unknown

(c) Suppose that you wanted the program to print the message:
You won $9999999

What value would input need to have to make that happen? (Hint: the final page of the exam has
an ASCII table.) Write the 64-bit integer value in hexadecimal:

0x3939393939393924

Page 6

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 7 of 9 November 16th, 2018

The two important themes of this question are understanding how the stack is maintained, and noticing
that values are left in memory after they have been on the stack. The reason that at the language level
we say that uninitialized local variables are undefined is that their contents might be based on some
data that was previously on the stack in another function. If you see how code is compiled you can
predict exactly how this will happen and control those values, as in part (c).

The stack pointer starts out with the value 0x7fffffff0030 in main before the call to f1. It is
then changed two times before the point of part (a): we push the return address for f1, and then f1
subtracts a further 0x28. This means that the stack pointer value inside f1 is 0x7fffffff0000, a
value we chose so that the pointer arithmetic would be easy. The return address for f1 is stored first
at 0x7fffffff0028. Then 1, 2, and x or 7 are written to stack slots for local variables using the
offsets of 0x20, 0x18, and 0x10 respectively, which match up with the stack addresses with the same
last two hex digits. We didn’t show you any code that modifies the other stack locations, so they should
be considered unknown.

Observe that we showed you all of the code between f1 and the call to f2, so you can see that the stack
pointer will return to the same value in main before the return address for f2 is pushed. And also
f2 subtracts the same amount from the stack pointer as f1, so the stacks will look similar. The return
address for f2 goes in place of the return address for f1. The values 1 and 2 that were stored in part
(a) are still there, since nothing has written to them. But because 7 is odd, the code will write 0 to the
byte at stack pointer offset 0x10, which is the first byte of the local character array. All the other
bytes of 7 were 0x00 already, so that leaves you with 0 (or if you prefer 0x0000000000000000 at
offset 0x10. The remaining positions are still unknown.

If we want to control the message that f2 prints, we need to control the bytes of the local array, and
we need to make sure the least-significant byte (the first byte if it’s considered as an array) is even so
that it won’t be replaced with a null terminator. The ASCII code for a dollar sign is 0x24, which it
works out is even. The ASCII code for the decimal digit 9 is hex 0x39. So the value we want to put in
input, so that it will be reused as the value of local should have 7 0x39 bytes and one 0x24 byte.
When you write it as a 64-bit integer, the 0x39 bytes come first and the 0x24 byte is the last, even
though it will be first to be printed. It works this way because x86-64 is little-endian.

Page 7

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 8 of 9 November 16th, 2018

4. (20 points) Structure shuffling.

Each of the parts of this question gives you the names and types of the fields of a C struct. Choose an
order for the fields, so that layout of the structure on x86-64 has the requested property. Give the order
by listing the names of the fields in your order; we have shown one answer as an example. Optionally
(e.g., for partial credit), we have also left space where you could draw the structure layout.

Example fields: short s; char c; float f;
Example property: fields are in order of increasing size
Order: c, s, f

Some of these have a number of possible answers; here we show one correct order and the correspond-
ing byte sequence, split up with spaces every 4 bytes and with x for padding.

(a) Fields: short s; int i; char c; double d; unsigned char uc;
Property: structure requires no padding

Order: d, i, s, c, uc
dddd dddd iiii sscu

This an example of the general strategy of avoiding padding by going in descending order of field
size.

(b) Fields: char a, b, c; int i, j, k;
Property: total size (including padding) is 24 bytes

Order: a, i, b, j, c, k
axxx iiii bxxx jjjj cxxx kkkk

This is a pretty inefficient order. But the basic observation is that if you alternate the characters
and ints, each character will also need 3 padding bytes.

(c) Fields: float *fp; short s; float f; int i; unsigned short us;
Property: s starts at offset 10

Order: fp, us, s, i, f
pppp pppp uuss iiii ffff xxxx

(In the diagram p stands for fp, while f is f.) You could also have put i and f at the beginning.
But the most important thing is that because all the non-short fields are multiples of at least 8 bytes,
you need to put the unsigned short before s to get s at the offset 10 which is congruent to 2 mod 4.

(d) Fields: short s; char c; float f; double d; int *ip
Property: every field offset divisible by 8

Order: s, d, c, ip, f
ssxx xxxx dddd dddd cxxx xxxx pppp pppp ffff xxxx

This is a bit like (b) in that we want to waste space so that even the small fields need to be padded to
a multiple of 8 bytes. One thing to be careful of is that because we only have two 8-byte variables
d and ip, we have to do the interleaving with them in the second and fourth positions rather than
in odd-numbered positions so that no shorter fields are next to each other.

Page 8

CSci 2021 Section 010 Midterm Exam 2 (solutions) - Page 9 of 9 November 16th, 2018

This extra page has some tables of information for your reference.
x86-64 assembly language (AT&T format):

Addressing modes
(R) mem[reg[R]]
D(R) mem[D + reg[R]]
D(B,I,S) mem[D + reg[B] + reg[I] * S]

omitted D, B, or I treated as 0
omitted S treated as 1

Size suffixes
b 8-bit byte
w 16-bit value
l 32-bit value
q 64-bit value

Calling conventions
Argument registers %rdi, %rsi, %rdx, %rcx, %r8, %r9
Return value %rax

Sizes of basic C types on x86-64:

Type Size (bytes) Alignment
char 1 1
short 2 2
int 4 4

long 8 8
float 4 4

double 8 8
pointer 8 8

ASCII/hex table:

0 NUL 10 DLE 20 30 0 40 @ 50 P 60 ‘ 70 p
1 SOH 11 DC1 21 ! 31 1 41 A 51 Q 61 a 71 q
2 STX 12 DC2 22 " 32 2 42 B 52 R 62 b 72 r
3 ETX 13 DC3 23 # 33 3 43 C 53 S 63 c 73 s
4 EOT 14 DC4 24 $ 34 4 44 D 54 T 64 d 74 t
5 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 e 75 u
6 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v
7 BEL 17 ETB 27 ’ 37 7 47 G 57 W 67 g 77 w
8 BS 18 CAN 28 (38 8 48 H 58 X 68 h 78 x
9 HT 19 EM 29) 39 9 49 I 59 Y 69 i 79 y
A LF 1A SUB 2A * 3A : 4A J 5A Z 6A j 7A z
B VT 1B ESC 2B + 3B ; 4B K 5B [6B k 7B {
C FF 1C FS 2C , 3C < 4C L 5C \ 6C l 7C |
D CR 1D GS 2D - 3D = 4D M 5D] 6D m 7D }
E SO 1E RS 2E . 3E > 4E N 5E ˆ 6E n 7E ˜
F SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL

Page 9

