
CSci 2021, Fall 2018
Homework Assignment II: Solution Set
Due: Monday, October 15th, at beginning of lecture

Submit this assignment on paper at the beginning of your lecture section. We strongly recommend
that you type and print out your solutions. Please label your assignment with your name, UMN
email address, and the time of your recitation section (10:10, 11:15, 12:20, or 1:25).

Problem 1
Consider the following C code for a function with a for loop:

int count_up_to(long n){
long x = 1;
for (long i = 0; i < n; i++){

if (x == i) {
x = x * 5;

}
else {

x = x / 5;
}

}
return x;

}

Based on the C code above, fill in the blanks below in its corresponding assembly source code.
You may only use the assembly-language register names rax, rcx, rdi or rsi. You may wish
to review section 3.5.5 of the textbook for some relevant instructions.

count_up_to:
movq $1, %rax
movq $0, %rcx

.L1:
cmpq %__rdi__, %_rcx___
jge .L4

.L2:
cmpq %rax, %rcx
__jne__ .L3
imulq $5, %rax
addq $1, %rcx
jmp ___.L1___

.L3:
cqto
movq $_5__, %_rsi__
_idivq__ %rsi
addq $1, %rcx
jmp __.L1__

.L4:
ret

1

Problem 2
Consider the table below, which shows the initial contents of some registers and memory locations:

Initial Values
Registers Values Memory Values
rax 10 0x2FF8 38
rdx 40 0x3000 190
rcx 20 0x3008 3
rbx 0x3008 0x3010 68

a. Fill in Table 1 showing the results if the following machine code is run from the initial state:

movq $0, %rax
movq $100, %rdx
addq %rcx, %rax
imulq %rax, %rdx

Table 1
Registers Values Memory Values
rax 20 0x2FF8 38
rdx 2000 0x3000 190
rcx 20 0x3008 3
rbx 0x3008 0x3010 68

b. Fill in Table 2 showing the results if instead the following machine code is run from the initial
state: The solution of the first table is for address addition that goes from high to low. This is how
that CPU actually interprets positive offsets for the stack and thus is the correct solution for this
problem. The second table was not counted against students, but the first table’s soltions should be
followed in the future.

leaq 8(%rbx), %rax
movq $150, (%rax)
movq $1, %rdx
addq %rcx, (%rbx, %rdx, 8)
imulq %rdx, %rcx

Table 2: low to high WAS NOT COUNTED WRONG FOR GRADING
Registers Values Memory Values
rax 0x3010 0x2FF8 38
rdx 1 0x3000 190
rcx 20 0x3008 3
rbx 0x3008 0x3010 170

Table 2: high to low CORRECT SOLUTION
Registers Values Memory Values
rax 0x3000 0x2FF8 38
rdx 1 0x3000 170
rcx 20 0x3008 3
rbx 0x3008 0x3010 68

2

Problem 3
This is the assembly associated with the function: long function_A(long n):

function_A:
cmpq $1, %rdi
jle .L5
movl $1, %edx
movl $1, %eax
jmp .L3

.L4:
imulq %rdx, %rax
addq $1, %rdx

.L3:
cmpq %rdi, %rdx
jle .L4
rep ret

.L5:
movl $1, %eax
ret

A. Write C code that corresponds to the assembly given above. Give the variables meaningful
names, not the names of registers.

B. Explain in a sentence or two what this function does.

3

Problem 3 Solution

A.

long function_A(long n){
if (n < 2){

return 1;
}
long product = 1;
for (long i = 1; i <= n; i++){

product *= i;
}
return product;

}

B. This function computes n!.

4

Problem 4: (Conditional moves and jumps.)
A. The following assembly code implements a simple function whose definition has three different
cases:

three_cases:
xorq %rax, %rax
movq $-1, %rdx
testq %rdi, %rdi
setne %al
cmovs %rdx, %rax
ret

Rewrite the function so that it computes the same result, but uses conditional jump instructions
jXX and labels, and does not use conditional move or set-condition (cmovXX or setXX) instruc-
tions.

B. (Based on the textbook problem 3.61.) The following C function loads a 64-bit value from
a pointer, but if the pointer is null it just returns the value -1, so it never dereferences a null pointer.

long safe_load(long *p) {
if (p)

return *p;
else

return -1;
}

At first this might seem like a kind of choice that cannot be implemented using a conditional
move, since it would be bad to always dereference the pointer, and then return either the loaded
value or -1 based on whether the pointer was null. The function will crash at the time it tries to
load from a null pointer, even if the loaded value is later not used. However, we could give the
function a different structure to avoid this problem and still use a conditional move. First, to get the
core idea, show how to rewrite the function in C without any conditional side-effects. Specifically,
write a function that has the same behavior, but does not use an if statement or other control flow.
You should use the ? : ternary operator, but only in a case where all the arguments to the ? :
are simple variables. (Hint: the function will still have to do a dereference, but the dereference will
have to be unconditional. In other words, the function needs to dereference something every time
in executes.)

Now, write an assembly-language version based on your new C version, which uses only con-
ditional move instructions, and no conditional jump instructions or labels.

5

Problem 4 Solution
a. (10pts)
three_choices: # gcc 8.2 -Og:

testq %rdi, %rdi
js .L3
jle .L4
movl $1, %eax
ret

.L3:
movq $-1, %rax
ret

.L4:
movl $0, %eax
ret

b. (24 pts)

long safe_load(long *p) {
long m1 = -1;
long *safep = &m1;
int is_null = !p;
long *p2 = is_null ? safep : p;
return *p2;

}

safe_load:
subq $16, %rsp
movq $-1, 8(%rsp)
leaq 8(%rsp), %rax
testq %rdi, %rdi
cmove %rax, %rdi
movq (%rdi), %rax
addq $16, %rsp
ret

6

Problem 5
The following C code defines a simple linked list data structure.

struct Linked_List {
int val;
struct Linked_List *next;

};

Next is a function in assembly with the given function definition:

int link_func_A(struct Linked_List *s, int v);

The assembly for the function was produced with GCC.

link_func_A:
jmp .L2

.L4:
cmpl %esi, 0(%rdi)
je .L5
movq 8(%rdi), %rdi

.L2:
testq %rdi, %rdi
jne .L4
movl $0, %eax
ret

.L5:
movl $1, %eax
ret

(Hint: The value of the struct is accessed by accessing the register with 0(%rcx), or at a zero
offset of the register. To access the next pointer you will need an offset of 8, so the corresponding
access would look like 8(%rcx).)

A. Write the C code that corresponds to the assembly. Make sure to not use register names for
variables. (Hint: You should use a while loop. Can you find the loop condition?)

B. Explain in a sentence or two what this function does.

7

Problem 5 Solution

A. The problem checks if the pointer is NULL by testing against itself bitwise (testq %rdi,
%rdi). The moving of pointers is done by moving the address the register is pointing at with offsets
of 0s and 8s. An offset of 0 gets the value, and an offset of 8 gets the next pointer next.

int link_func_A(struct Linked_List *s, int v){
while (s != NULL){

if (s->val == v){
return 1;

}
s = s->next;

}
return 0;

}

B. The function searches for the value v in a linked list and returns 1 if it is found and 0 if it
not found.

8

