
Recursion
Ch 14

Announcements

Midterm graded on gradescope

Highlights

- recursion

Recursion

No fancy blue words or classes this chapter

Recursion is simply calling a method from
inside itself

This copy will re-run the method on any new
arguments or information

(See: badRecursion.cpp)

Recursion

If you forget your stopping case, you will not
get an infinite loop but crash the program

This is because every function call
takes up more memory, so you
constantly ask for more memory

Eventually the memory (stack)
cannot store anymore

Recursion

Recursion basics

Good recursion must have 2 parts:
- A recursive call on a smaller problem
- An ending case

(see: https://www.youtube.com/watch?v=-xMYvVr9fd4)

In order to use recursion, you must be able
to identify a subproblem that is very similar
to the original problem

Each step must get you closer to the solution

https://www.youtube.com/watch?v=-xMYvVr9fd4

Recursion basics

For recursion, you can basically assume your
function works as you want it to (even though
you have not written it)

If you have the ending case and reduction step
correct, then it will!

Recursion: Family tree

Person

Descendant

Recursion: In words

A child couldn't sleep, so her mother told
a story about a little frog,
 who couldn't sleep, so the frog's mother told

a story about a little bear,
 who couldn't sleep, so bear's mother told

a story about a little weasel
 ...who fell asleep.
 ...and the little bear fell asleep;
 ...and the little frog fell asleep;
...and the child fell asleep. (See: story.cpp)

Recursion: Basic example

Remember, code starts in main and runs from
top to bottom in sequence (normally)

When you call a function you go execute all
the function's code is run before going back
to the original code

Code order is important in recursion!

(See: stringRecursion.cpp)

Recursion

What if I wanted to just count down to zero?
countdown(5) would show:
5
4
3
2
1
0!

(see: countdown.cpp)

Recursion

There are two important parts of recursion:
-A stopping case that ends the recursion
-A reduction case that reduces the problem

What are the base and stopping cases for
the Fibonacci numbers?

(sum of the previous two numbers)
(see last time: fibonacciRecursion.cpp)

Recursion: Root finding

Find a root of:
(see: rootFind.cpp)

Method:
1. Find one positive
y and 1 neg. y
2. Find midpoint
(of x values)
3. update y-pos/neg

Recursion

How would you sum the numbers 1 to n using
recursion (not a loop)?

For example sumToN(5) = 15,
as 1+2+3+4+5 = 15

What is the stopping case?
How do you reduce the problem?

(see: sumToN.cpp)

Recursion

What if we defined tangent recursively as:

Assume we take an input for how many times
to do this recursion
What is the pattern? What is the stopping case?
How do we move towards the stopping case

(see: tangent.cpp)

Recursion: Tower or Hanoi

https://www.youtube.com/watch?v=2SUvWfNJSsM

Recursion: Tower or Hanoi

The tower of Hanoi is played by:
1. Moving a single ring to another stack
2. Smaller rings cannot have larger rings on

top of them

(see: towerHanoi.cpp)

Recursion

How would you solve a sudoku problem?
Rules:
1. Every row has numbers 1-9
2. Every column has numbers 1-9
3. The nine 3x3 boxes have numbers 1-9

Reduce problem?
Stopping case?

(see: sudokuSolver.cpp)

Recursion

Do not try to solve chess in this manner!

You will segfault
(you will also not finish computing before
the sun burns the earth to a crisp)

Miscellaneous notes

Try googling “recursion” and click on the
spelling suggestion

Recursion is very powerful and used in many
advanced algorithms

It will give you a headache for a while...
=(

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 20
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

