File output
Ch 6

I Download vs stream

NO EXIT
81% of Sleep.exe downloaded [=][8][*]

Al ATET =

Done 01:59

Estimated time left: 2 hours
Download to: C:\MyBrain.\sleep

L SINGER

(Open][OpenEyes:} Cancel

Streams

A “stream” is information flow that is
immediately processed

For example:
Streaming video is watch as data arrives
Downloading video stores it for later

For file input/output (file I/0), we will have
to create a stream between file and code

Data persistence

The temperature decay problem from last lab
had multiple inputs (annoying to re-enter)

What if you had a large amount to input to
your program?

100 inputs?

1,000,000 data points for predicting weather?

Data persistence

Files are also nice, as you can look them
up at a later time

After your program output ends,
the text disappears (unless you re-run it)

Files stay on your computer forever
(until comp dies)

“Opening” a file

File output is very similar to terminal output,
except we have to open and close files

To create a stream between a variable name
and file name:

ofstream out:
out.open) :

Type \

File name

Variable name

I “Opening” a file

Sometime you cannot open a file (don't have
permission)

You can check if the file actually opened by

calling fail() (returns true if did NOT open):

if(out.fail())
i

}

exit() in <cstdlib>, causes program to terminate

exit(1l); // non-zero for an error state

Writing to a file

After you have opened a file (stream), you
can then write to it

This is done in an almost as cout, except
you use the your variable name for the file

Terminal: COUT << F

File: OUT <<)

Writing to a file

Writing to a file

out
(ofstream)

File output imports

To use ofstream type, you need to include
<fstream>

#1include

This gives you ofstream (output file stream)
and ifstream (input file stream), which we
will see next

(See: helloWorldFile.cpp)

I Once we are done writing to a file, we should

Closing a file

close the stream

This is an extremely complicated process:
out.close();

Variable name

If you don't close your stream, something
might be left in the buffer

1d==23a37 1
typek50

name="Waldstjjjifitte"
= _Make sure

v 0L LeT="5AV"
previous controller="ADU" I Own. ° o

B i Latharl Wy cstate=1

i-?']FK»/ el k] Last_estate grant=1578.6.20
WAL A # core="SAV"
trade="rheinland"
8 culture=swiss
religion=catholic
original religion=catholic
capital="Schwyz"
is city=yes
® base tax=1.000
Y original tax=3.000

y base production=1.000
base manpower=2.000
4 Likely rebels="nationalist rebels”
trade goods=iron

1 1 =0.000
| Locet autonoy=0.000. R @O Ve
ONOMYy=

B 1 ketplace=yes | <= thi
4 1w =ves :lE;

history={
owner="SWI"

controller={]j_ne

tag="SWI"
}

culture=swiss
religion=catholic
capital="Schwyz"
trade goods=iron
hre=yes
S . dCl base tax=4.000
(ee. nee Ose.cpp) base production=4.000

base manpower=2.000

—_— A . . - -

Where did this file go?

The default “path” for a file is where your
cpp file is located

You can specify the path when you open
the file:

out.open() ;

You can also use relation operations:
out.open() ;

Appending to files

What happens if I run HelloWorldFile
multiple times?

Open file and override:

out.open |) ;
Open file and append:
out.open (, 10S::app);

(See: helloWorldFileAppend.cpp)

File writing overview

- You need to open a file before writing to it

- You should close the file when you are done
- You can either override or append to files

- Use .fail() to see if file actually opened

- You cannot go backwards and “replace” or
“undo”

- You cannot “preppend” to a file
(must either append from end or override)

Caution!

Be careful about writing an infinite loop while
I outputting to a file

You will very quickly run out of hard drive
space

If you think it is stuck in an infinite loop, press
ctrl+c to kill the program (from the window)

(see: nomNomHD.cpp)
https://www.youtube.com/watch?v=_95I_1rZils

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

