File output
Ch 6
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Streams

A “stream” is information flow that is
immediately processed

For example:
Streaming video is watch as data arrives
Downloading video stores it for later

For file input/output (file I/0), we will have
to create a stream between file and code



Data persistence

The temperature decay problem from last lab
had multiple inputs (annoying to re-enter)

What if you had a large amount to input to
your program?

100 inputs?

1,000,000 data points for predicting weather?



Data persistence

Files are also nice, as you can look them
up at a later time

After your program output ends,
the text disappears (unless you re-run it)

Files stay on your computer forever
(until comp dies)



“Opening” a file

File output is very similar to terminal output,
except we have to open and close files

To create a stream between a variable name
and file name:

ofstream out:
out.open ) :

Type \

File name

Variable name



I “Opening” a file

Sometime you cannot open a file (don't have
permission)

You can check if the file actually opened by

calling fail() (returns true if did NOT open):

if(out.fail())
i

}

exit() in <cstdlib>, causes program to terminate

exit(1l); // non-zero for an error state



Writing to a file

After you have opened a file (stream), you
can then write to it

This is done in an almost as cout, except
you use the your variable name for the file

Terminal: COUT << F

File: OUT << )



Writing to a file




Writing to a file

out
(ofstream)




File output imports

To use ofstream type, you need to include
<fstream>

#1include

This gives you ofstream (output file stream)
and ifstream (input file stream), which we
will see next

(See: helloWorldFile.cpp)



I Once we are done writing to a file, we should

Closing a file

close the stream

This is an extremely complicated process:
out.close();

Variable name

If you don't close your stream, something
might be left in the buffer
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Where did this file go?

The default “path” for a file is where your
cpp file is located

You can specify the path when you open
the file:

out.open( ) ;

You can also use relation operations:
out.open( ) ;



Appending to files

What happens if I run HelloWorldFile
multiple times?

Open file and override:

out.open | ) ;
Open file and append:
out.open ( , 10S::app);

(See: helloWorldFileAppend.cpp)



File writing overview

- You need to open a file before writing to it

- You should close the file when you are done
- You can either override or append to files

- Use .fail() to see if file actually opened

- You cannot go backwards and “replace” or
“undo”

- You cannot “preppend” to a file
(must either append from end or override)




Caution!

Be careful about writing an infinite loop while
I outputting to a file

You will very quickly run out of hard drive
space

If you think it is stuck in an infinite loop, press
ctrl+c to kill the program (from the window)

(see: nomNomHD.cpp)
https://www.youtube.com/watch?v=_95I_1rZils
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