
More loops
Ch 3.3-3.4

Announcements

Quiz next week!
-Covers up to (and including) HW1 (week 1-3)
-Topics: cout/cin, types, scope, if/else, etc.

Review: Loops

We put a loop around code that we want to run
more than once

If we have an easy sequence (0, 1, 2, ... 10)
of values we want to go over, for loop is nice

Otherwise, the while loop is a bit more general
and is typically more useful if we are asking
the user to control the loop

Review: Loops

Write a program that asks the user to input a
value, then show the sum from 1 to that value
in the following format:

Find the sum from 1 to what
value? 5

1+2+3+4+5 = 15

(See: sumToN.cpp)

Nested for loop

Now modify the code so it shows all sums less
than or equal to the entered values, as such:

Find the sum from 1 to what
value? 4
1 = 1
1+2 = 3
1+2+3 = 6
1+2+3+4 = 10
(See: sumAllToN.cpp)

Nested for loop

Like nested if statements, we can also make
nested loops (which can cause headaches)

It might help to think of each loop as an added
dimensions:

1 loop = 1 dimension (line/ruler)
2 loops = 2 dimensions (plane/square/area)
3 loops = 3 dimensions (volume/cube)
...

(See: nestedLoop.cpp)

Nested for loop

Ask the user for a size of matrix, then show
the identity matrix for that dimension:

What size? 4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(See: identityMatrix.cpp)

Overview

loop if/else ops
functions

Essentials

types arrays

scope
Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload
pointers

dynamic memory

Functions
Ch 4-5

Functions

So far we have been writing code inside
main() without understanding some parts of it

copy paste this, else
computer throws fit

Dunno what this does
but I can forget it and
computer doesn't careWhy zero?

Functions

Can think of methods as packaging multiple
commands into one

Functions

An analogy might be a wallet/purse

If you want to pay someone, it is easier to
find your cash/card/check if organized

Functions

(Side note: you want to keep functions
as simple as possible... if you try to use them
to do too many things, they get bulky and
harder to use)

Functions

We have used functions before, such as
sqrt(), pow() or possibly round()

You can also create your own similar to
creating variables by:

(1) declaring the function
(2) defining what the function does

(See: sayHi.cpp)

Functions

Function declaration
(put before main or any
other definition)

Function definition

Functions

Functions, like variables, have types (int,
double, char, etc.)

We call them the return value, as it is what
the function will become after being finished

For example: sqrt(4) will become 2.0 (double)
when it is finished

(See: addition.cpp)

Functions

The return statement value must be the same
as the return type (or convertible)
(See addition2.cpp)

return type

function header
(whole line)

body
return statement

parameters (order matters!)

Functions

You can actually have multiple functions
with the same name, as long as the
arguments are different either by:
- a different amount of arguments
- different types of arguments

This is called overloading a function

(See overloading.cpp)

Functions

You can make functions return type void,
but not variables (an empty variable? ehh...)

This means nothing is returned, so you will
get an error if you say:
void x();
 ... then ...
int y = x(); // x not an int! or anything!

void functions might just print out something

Functions

(See maze.cpp)

Functions

It is important to note that the code will
resume after the function call where it was
used

For example, sqrt(4) will return the value 2.0
where it was used and the rest of your code
will continue

Where does the maze code return to?

Functions

Multiple function uses/calls create a “stack”
much like pancakes: every time you use a
function, it will add another pancake

When you return, the
top pancake is removed

main() is the
bottom pancake

Functions

(See: runForest.cpp)

How to make the person run?

Functions

You can also use functions that return
bool types in an if statement or loop

This is commonly used if you have complex
logic as it is normally easier to write
a function that have a very complex
bool expression

(See: findPrime.cpp)

scope

(See: sillySwap.cpp)

Typically the value of variables is copied
and not given access to the real value

This is similar to moodle, the score you
see for grades cannot change the score I
give you!

scope

Blocks (inside { }) of code can only see
variables from their parent blocks

You can also make global variables
outside of all blocks
(almost as if your whole program has
a start and end brace around it)

(See: globalVariable.cpp)

scope

You can give away your memory location
by using “call by reference” with functions

This will share the variable between the
two functions, namely the function that
is using the references (&) can modify
the value

(See: callByReferenceSwap.cpp)

scope

We will talk more about the difference
between a variable's memory location and
value later

For now, a memory location (or reference)
will give a function full access to modify
the value

References

When memory does not actually hold the
value of an object, but instead holds
information about the actual location...

... this is called a reference
(See: changeInt.java)

References

If you use a normal function (call by value)
then you will essentially make a photo copy
of the variables

(makes 2 variables, does not effect other)

If you use call-by-reference, you have only one
variable, but share it between you two

This is similar to a website link, if two people
follow the link they end up in the same page

Debugging

-Test small pieces of code at a time
-Add cout statements to see values in loops
(and to localize error in general)
-Test code on inputs you know the answer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	methods
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	scope
	Slide 28
	Slide 29
	Slide 30
	Slide 36
	Slide 37
	Slide 38

