
C++ Basics

Lab 1 this week!

Homework posted Wednesday (late)

Announcements

Types of errors

Syntax error - code will not compile
e.g. cout(“hi”);

Runtime error - code crashes after starting
e.g. (0 input to runTimeError.cpp)

Logic error - code runs but doesn't return
the correct answer
(see: logicError.cpp)

Syntax

Syntax is a fancy word for the “grammar” of
programming languages

The basic English syntax is:
(subject) (verb) (noun)
“I eat bananas” not “Bananas I eat”

The computer is VERY picky (and stubborn)
about grammar, and will not understand you
unless you are absolutely correct!

Comments

Comments are ignored pieces of code
(computer will pretend they do not exist)

// denotes a single line that is commented
// (everything before hitting enter)

/* denotes the beginning of a comment
and the end of a comment is denoted by */

Avoid errors

To remove your program of bugs,
you should try to test your program on
a wide range of inputs

Typically it is useful to start with a small
piece of code that works and build up
rather than trying to program everything
and then debug for hours

Variables

To use variables two things must be done:
- Declaration
- Initialization

See: uninitialized.cpp

I am 0 inches tall.
I am -1094369310 inches tall.

Example if you forget to initialize:

Variables are objects in program

Variables

int x, y, z;
x = 2;
y = 3;
z = 4;

int x=2, y=3, z=4;

Same as:

Declaration

Initialization

Variables can be declared anywhere
(preferably at start)

Assignment operator

= is the assignment operator

The object to the right of the equals sign
is stored into the object in the left

int x, y;
y = 2;
x = y+2;

See: assignmentOp.cpp

Assignment operator

= is NOT a mathematic equals

x=3;
x=4; // computer is happy!

This does not mean 3=4

Assignment operator

To the left of = needs to be a valid object
that can store the type of data on the right

int x;
x=2.6; // unhappy, 2.6 is not an integer

x+2 = 6; // x+2 not an object

2 = x; // 2 is a constant, cannot store x

Assignment operator

What does this code do?

int x = 2, y = 3;
y=x;
x=y;

What was the intention of this code?

Increment operators

What does this code do?

int x = 2;
x=x+1;

Increment operators

What does this code do?

int x = 2;
x=x+1;

Same as:
x+=1;

or
x++;

Increment operators

Two types of increment operators:

x++; // increments after command
vs

++x; // increments before command

Complex assignments

The following format is general for
common operations:

variable (operator)= expression
variable = variable (operator) expression
Examples:

x+=2 x = x + 2
x*=y+2 x = x * (y + 2)

Order of operations

Order of precedence (higher operations
first):
-, +, ++, -- and ! (unary operators)
*, / and % (binary operators)
+ and - (binary operators)

% is remainder operator, which you might
not have used much but is awesome!

Order of operations

If you are dealing with whole numbers,
% can tell you how many “items” do not
divide equally

Order of operations

Binary operators need two arguments
Examples:
2+3, 5/2 and 6%2

Unary operators require only one argument:
Examples: (see binaryVsUnaryOps.cpp)
+x, x++, !x

(! is the logical inversion operator for bool)

Order of operations

When multiple operations have the
same precedence level:

Binary operations go from left to right
7 + 3 + 4

Unary operations go right to left
- -7 (double negative)

Identifiers

Identifiers

An identifier is the name of a variable (or object,
class, method, etc.)

int sum;

type

identifier

- Case sensitive
- Must use only letters,

numbers or _
- Cannot start with

a number
- (Some reserved

identifiers, like main)

Identifiers

Already did this in week 1!
See: RuntimeError.cpp

Identifiers

1) james parker
2) BoByBoY
3) x3
4) 3x
5) x_______
6) _______x
7) Home.Class
8) Five%
9) x-1

Which identifiers are valid?

Identifiers

1) james parker
2) BoByBoY
3) x3
4) 3x
5) x_______
6) _______x
7) Home.Class
8) Five%
9) x-1

Which identifiers are valid?

Identifiers

(See: float.cpp)

Identifiers

	Slide 1
	Slide 2
	errors
	Slide 4
	Slide 5
	Slide 6
	vars
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	swap
	+=
	Slide 14
	Slide 15
	Slide 16
	op order
	int division
	Slide 19
	Slide 20
	Slide 21
	identifiers
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

