
Parallel processing



Highlights

- Making threads

- Waiting for threads



Terminology

CPU = area of computer that does thinking
Core = processor = a thinking unit

Program = code = instructions on what to do
Thread = parallel process = an independent
part of the program/code
Program = string, 
thread = 1 part of that

CPU
front/back

Cores



Review: CPUs



Review: CPUs

In the 2000s, computing too a major turn:
multi-core processors (CPUs)



Review: CPUs



Review: CPUs

The major reason is due to heat/energy density



Review: CPUs



Review: CPUs

This trend will almost surely not reverse

There will be new major advancements in
computing eventually (quantum computing?)

But “cloud computing”, which has programs
that “run” across multiple computers are
going nowhere anytime soon



Parallel: how

So far our computer programs have run
through code one line at a time

To get multiple parts running at the same time,
you must create a new thread and give it
a function to start running:

starts another
thread at foo

Need: #include <thread>



Parallel: how

If the function wants arguments, just add them
after the function in the thread constructor:

This will start
function “say”
with first input
as “hello”

(see: createThreads.cpp)



Parallel: basics

The major drawback of distributed computing
(within a single computer or between) is
resource synchronization (i.e. sharing info)

This causes two types of large problems:
1. Conflicts when multiple threads want to use

the same resource

2. Logic errors due to parts of the program
having different information



1. Resource conflict

Siblings anyone?



1. Resource conflict

Public bathroom?

All your programs so far have had 1 restroom,
but some parts of your program could be
sped up by making 2 lines(as long as no issues)



1. Resource conflict

We will actually learn how to cause minor
resource conflicts to ensure no logic errors

This is similar to a cost of calling your
forgetful relative to remind them of something

This only needs to be done for the important
matters that involve both of you (e.g. when
the family get-together is happening)



2. Different information

If you and another person try to do something
together, but not coordinated... disaster



2. Different information

Each part of the computer has its own local
set of information, much like separate people

Suppose we handed out tally counters and told
two people to count the amount of people



2. Different information

However, two people could easily tally the
number entering this room...

Simply stand one by each door and add them

Our goal is to design programs that have
these two separate parts that can be done
simultaneously (which tries to avoid sharing
parts)



Parallel: how

However, main() will keep moving on without
any regard to what these threads are doing

If you want to synchronize them at some later
point, you can run the join() function

This tells the code to wait here until the thread 
is done (i.e. returns from the function)



Parallel: how

Consider this:

The start.join() stops
main until the peek() 
function returns

(see: waitForThreads.cpp)



Parallel: advanced

None of these fix our counting issue (this is,
in fact, not something we want to parallelize)

I only have 4 cores in my computer, so if I
have more than 3 extra threads (my normal
program is one) they fight over thinking time

Each thread speeds along, and my operating
system decides which thread is going to get
a turn and when (semi-random)



Parallel: advanced

We can force threads to not fall all over
themselves by using a mutex (stands for 
“mutual exclusion”)

Mutexes have two functions:
1. lock
2. unlock

After one thread “locks” this mutex, no others
can pass their “locks” until it is “unlocked”



Parallel: advanced

You can think about a “muxtex” like a 
porta-potty or airplane lavatory indicator:

It is a variable (information) that lets you know
if you can proceed or have to wait
(when it is your turn, you indicate that this
mutex is “occupied” by you now via “lock()”)



Parallel: advanced
Lock Unlock



Parallel: advanced

These mutex locks are needed if we are trying
to share memory between threads

Without this, there can be miscommunications
about the values of the data if one thread
is trying to change while another is reading

A very simple example of this is having
multiple threads go: x++
(see: sharingBetweenThreads.cpp)



Parallel: advanced

You have to be careful when locking a mutex,
as if that thread crashes or you forget to unlock
... then your program is in an infinite loop

There are way around this:
- Timed locks
- atomic operations instead of mutex

The important part is deciding what parts can
be parallelized and writing code to achieve this


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

