
Late binding
Ch 15.3

Highlights

- Late binding for variables

- Late binding for runctions

Review: Derived classes

Today we will deal more with inheritance

Mainly we will focus on how you can store
a child class in a parent container (sort of)

Questions we will answer:
What is this line of code doing exactly?
Are there other ways of doing this?

Early vs late binding

Static binding (or early) is when the computer
determines what to use when you hit the
compile button

Dynamic binding (late) is when the computer
figures out the most appropriate action
when it is actually running the program

Much of what we have done in the later parts
of class is similar to late binding

Static binding

When you go to a fast-food-ish restaurant,
you get one tray, regardless of what you order

The key is before they knew what you were
ordering, they determined you needed one tray

Dynamic binding

When you order a drink, they do not just give
you a standard cup and say “fill to this line”

Now, they have to react to what you want
and give you the correct cup size (not a
predetermined action, thus dynamic binding)

Static binding

Checking out at a grocery store, all items are
scanned and added to the bill in the same way

The same program on the computer runs for
all items and just identifies their price

Dynamic binding

After you pay, you put the food into bags
(paper/plastic/your own)

What items go where depends on what you
want to use and the item properties (weight,
dampness, rigidness, etc.)

Both

Static/dynamic binding

Consider this code:

You know the output even before the program
runs (you know at compile time = static)

While this code, you only know the output
when the program runs (i.e. dynamic):

(See: compleVsRun.cpp)

Static/dynamic binding

static = rigid/constant
dynamic = flexible/adaptive

Static/dynamic binding

Static/dynamic binding is similar to how we
originally made arrays: (static/early binding)

To dynamic memory arrays: (dynamic/late)

Mini-quiz (ungraded)

What is in p at end of main()?
1. x=2
2. x=2, y=10
3. x=1, y=10
4. x=1
(Hint: what happens on this:)

= between parent/child

It is debatable how we should interpret line:

In C++ (not some other languages), this just
copies the parts of the parent class over

Parent

Child

Parent

=int x = 2 int x = 2

int y = 10
p

c

Mini-quiz (ungraded)

What is at p now?
1. x=2
2. x=2, y=10
3. x=1, y=10
4. x=1

= between parent/child pointers

When the objects are pointers, lines line just
changes the object being pointed to
(but not any information inside either class)

Parent

Child

Parent

=
int x = 1 int x = 2

int y = 10
p c

Parent* Child*
go go

Dynamic variable binding

If a Parent type is pointing to a Child instance,
we cannot directly access them (variables
cannot be “virtual”...)

Instead, we have to tell it to act like a
Child* by casting it: (bad practice as y public)

(see: dynamicObject.cpp)

Dynamic variable binding

If p points to a Parent instance, the below line
is VERY BAD (but it might work... sorta...)

You will be fooling around in some part of
memory that is not really associated p
(though you might not crash...)

(see: badMemoryManagement.cpp)
(see: memoryOops.cpp)

Break

Dynamic binding

Consider this relationship:

Dynamic binding

Tell each of them to swing()!

Dynamic function binding

Who's swing function is being run?

Dynamic function binding

Who's swing function is being run?

Answer: the Person's

If you have normal variables, p=b only copies
b's Person parts into p's Person box, so you
still only have one swing function

Dynamic function binding

Who's swing function is being run now?

Dynamic function binding

Who's swing function is being run now?

Answer: the Person's still...

p is pointing to a full Boxer object, but it only
thinks there is the Person part due to type
(see: incorrectChildFunction.cpp)

Dynamic function binding

If we want the computer to not simply look
at the “type” of pointer and instead determine
what action to take based on the object...

... we need to add virtual (this is slower)

(see: dynamicBindingFunctions.cpp)

Dynamic function binding

If you use a function to run an object and
you want to use virtualization, you need to
pass-by-reference (i.e. use an &)

If you do not, it will make a copy an this
will ignore the Child's part
Always a Person

Can be Person,
Boxer or Baseballer

Dynamic function binding

If you want to use this virtualization:
1. Pass in a pointer
2. Pass by reference (i.e. use &)

Needs to be memory address so the computer
can look at what type is actually there

If you give it a Parent box, it cannot do
anything but run normal Parent stuff
(see: dynamicBindingFunctionV2.cpp)

virtual deconstructors

If you use Parent* to dynamically create a
instance of a Child class, by default it will
ONLY run the parent's deconstructor

With a virtual deconstructor it will run the
deconstructor for whatever it is pointing at
(the Child's deconstructor in this case)

Thus it avoids memory leak
(see: yetAnotherMemoryLeak.cpp)

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

