Data structures, part 2

Ch ??7?
e Ry
®© © ©°0 o
0 o0 90 00
Binary Tree Stack Matrix

| ‘e l ce ' ?n

“'.,. I ‘e 0)
° 0000000000 o P
Unbalanlced Tree Array | ﬁe@

... - -f.. E a__‘_.g.
°0ee (O P

L 4]
Rebalanced Tree Linked List Sparge Matrix

Highlights

e ®
® © ©°'¢e
o0 o0 0 00
Binary Tree

®
»

® .. e
& S 3
Unbalanced Tree Array ﬁﬁ
..i. : :' 3 T"? P . 4 r;-
°0ee (O P

©
Rebalanced Tree Linked List Sparge Matrix

I Multi-dimension arrays

2D arrays have a row and column index,
I however this is a bit misleading

Computers actually only
have a 1D memory...

We are just pretending like
there is more...

How can we do this?

imension arrays

Multi-d

Same way we have 2D maps

make some assumpt

oject

S then pr

1011

Multi-dimension arrays

A 2D matrix is split up by rows, for example:

| int x[31[5]

We think of this as:
x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1/4
x2,0 x2,1 x2,2 x2,3 x2/4

But the computer sees:
x0,0 x0,1 x0,2 x0,3 x0,4 x1,0 x1,1 x1,2...

Multi-dimension arrays

So even if we declare x as:

| int x[31[5]

We can access it by either:
X[1][4] ((1nt*)x)[1*5 + 4]

ofol[i]l2][3][4]
t[s]l6][7]{s]/

2 [LI L e
0 1 2 3 4 arrayCheat.cpp)

I Stack

I have mentioned a stack a few times before...

I This is how function calls work, and they are
a specific type of linked list, but with only
two simple actions

1. Push (add new item to “top” of stack)
2. Pop (take top item off stack)

I Stack

Suppose we have this stack (pancake... yum!):

In this case if we “push”, we flip another
pancake on top

I Stack

Suppose we have this stack (pancake... yum!):

In this case if we “push”, we flip another
pancake on top

I Stack

Suppose we pushed a few times to get this:

Then a “pop” would remove the top pancake
(most recent)

I Stack

Suppose we pushed a few times to get this:

Then a “pop” would remove the top pancake
(most recent)

I Stack

“Pushing” is similar to inserting in linked list:
(Step 0. Make new box)

Step 1. Point new box to old top (next box)
Step 2. Change top to point a new box

head
Stepy
Object Object Object Object
next § next R next R next o
/* Step 1 .\

new_node
tail

I Stack

“Popping” can be done by simply changing
I the “top” to the one below (but memory leak)

The proper way is:
Step 1. Save old top gyl |,
(so you don't lose it)
Step 2. Change top to
one below
Step 3. Delete top e | Me| |
(see: stack.cpp)

I Stack vs Heap

There are actually two different parts of
I memory:

Stack = figures out “early” (normally)
Heap = put here if you use “new”
The way the stack is implemented gives

us all our scoping rules
(see: pointerPlaces.cpp)

Stack vs Heap
Differences?

I Stack:
- space limited
- automatically handled
- (assumes fixed sizes)

Heap:
- basically unlimited space
- slower to access

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

