
Data structures
Ch ???



Highlights



Arrays

What are some properties of arrays?
Pros:

Cons:



Arrays

What are some properties of arrays?
Pros:
1. Instantly access any spot
2. Built into many languages (C++ too!)

Cons:
1. Hard to add to end (sorta can)
2. Fixed size/length
3. Inserting in the middle is very annoying



Arrays

Partially filled arrays can get around inserting
at end issue

Dynamically created arrays can get around
fixed size issue in conjunction with above

(if out of space, ask for new array twice as
big and copy over old stuff)

(see: arrays.cpp)



Arrays

We can never really fix insertion though...

The biggest problem is inserting depends on
how many other things are already in the array

So in big arrays inserting is much harder!



Useful templates?

Last time we talked about how you can
pass types into function/classes much like
how we used to pass variables

One of the downsides of this is that general
types are harder to work with 

For example, multiplication works for ints
and double but not for string



Useful templates?

There are a couple very general places where
templates are useful:

1. swapping (did already)
2. converting (static_cast)
3. storing

Much like arrays, we want them to be able
to store any type of data 



vector class

Normal arrays have multiple issues:
(1) cannot grow (have to do partially filled)
(2) cannot insert (have to shift)

However, there is a class that does these things
for you automatically called “vector”

It also uses templates so you can store any
type (much like normal arrays)
(see: vector.cpp)



vector class

Useful vector functions:
push_back(array_type) - adds this element

to back of array
at(int) or [int] - index into the array at this

index
size() - how many elements there are now
insert(iterator, array_type) - inserts an 

element at iterator's spot (shifts current
element and all later down one)

erase(iterator) - removes an element



Linked List

We get around this problem with pointers

Instead of using an array directly, we will
make a mini-class with a single int and a 
pointer to another type as itself

(see: linkedList.cpp)

class “item”



Linked List

To insert an item into a linked list, we simply
need to make a new box, then change where 
the previous and new box are pointing

original inserted

new box

new box cuts in line



Linked List

To add to the end of a linked list, we first need
to go to the end, then simply add a new box
here and change the last link

To find the last item, we keep checking “next”
then moving to it, until “next” is nullptr
(a pointer to nowhere/the abyss)



Linked List vs Arrays

Linked lists have very easy inserts (you don't
need to shift anything, thanks to pointers!)

However, access time is not fast...

If you want the last item, you would need
to go through all others (one at a time)

Normal array: slow insert, fast access
Linked list: fast insert, slow access


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

