
Inheritance
Ch 15.1-15.2

Highlights

- Creating parent/child classes (inheritance)

- protected

- reuse constructors

Story time

Story time

Story time

Story time

Story time

Derived classes

Let's make this story into code!

To create create a child class from a parent
class, use a : in the (child) class declaration

(See: dunecat.cpp)

child class parent class

Derived classes

In a parent/child class relationship, the child
gets all variables and functions of the parent

This allows you to build off previous work,
even if you need to modify it slightly

This also makes it easier to maintain code,
as changing it in the parent class can effect
all children (and the children's children)

Derived classes

Typically you use classes when you have
multiple objects that are somewhat similar

You group the similar parts into a parent class
and the different parts into children classes

For examples all chairs have a flat surface to
sit on, but they come in different designs
(folding types that you are sitting on)
(or rolling types)

Derived classes

Parent:

Children:

(Internal
combustion
engine)

AD&D example

Phone

Finding similarities

Consider these two sports:

If you were going to create a C++ class for
these, what data would you store in them?

Finding similarities

Consider two classes you have made already:
Point
Complex

You can have a single parent of both of these
that stores the similar parts

This means you only need to type the code
once for both classes
(See: complexPoint.cpp)

Types + inheritance

What type of object is “soccer”?

It is (obviously) a “soccer”, but could it also
be classified as “sports”?
In fact, yes... both of these are legal:

“soccer” have more functionality than
“sports” (extra stuff), so they can act as one
(just pretend some boxes aren't there)

Types + inheritance

The reverse is not true (as we are using them):

You cannot say:

As the “worldCup” variable has more info
than the “fun” variable (the computer refuses
to just guess at the missing functions/data)
(see: convertClassTypes.cpp)

Break

Derived classes

The way data is stored in inherited classes
is a bit more complex

Children objects have both a “child” class
part and a “parent” class part in their box

While the “parents” only have the “parent”
part

(See: childParent.cpp)

Constructors + inheritance

Constructors need to be run every time you
make an object...

Now that objects have multiple types what
constructors are being run?

Both actually (again)

(See: computerConstructor.cpp)

Constructors + inheritance

If you do not specify what constructor to use,
it will use the default constructor
(or give an error if this does not exist)

You can also specify a non-default constructor
by using a “:” after the child's constructor

(See: computerConstructorV2.cpp)

protected

We know about two scopes for variables:
1. public (anyone, anywhere can use)
2. private (only my class can use)

But there is a third:
3. protected (me or my children can use)

If you think your children will modify/use
a variable, make it protected
(See: classScopes.cpp)

protected

Parent

Child

main()

Picture:
Red = private
Green = protected
Blue = public

Variables should be
either private or
protected

protected

While children technically inherit the private
variables/functions, they cannot use them

So effectively, they do not inherit these

It is not considered bad practice to make
variables protected (unlike public)

Does access matter?
Yes, because computer viruses

Redefine functions

As children add functionality to a parent class,
they may want to redefine some functions

This is different than overloading, where you
create multiple versions with the same name

When you redefine, you are basically
replacing an old function with a new version

(See: computerRedefine.cpp)

Redefine functions

After you have redefined a function,
the default name will go to the child's version

However, you can still access the parent's
version by using “::” (class affiliation)

Not inherited

As we saw before, constructors are not really
inherited (though they are called)

overloading operators will also not be
inherited (as computer cannot convert parent
into child class)

Destructors are also not inherited, but
the parent's version of the destructor will
always run (See: childDestructor.cpp)

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

