Inheritance

Ch 15.1-15.2
a0

Gerwatype: BB Caenctyp bib
Frenetypes black Phenotype: white
Cenotype: Bb Gengtypa: Bl CGenatype: Bh Genctype: Bl
Phenciype: black Frienotype: black Flreenotype: bladk Pherctype: black
|
- a

Genotype: BB Genotype: Bb Genatype: Bh Genotype: bb
Phenciype: bladk Phenatype: Biack FPhenotype: Hadk Phenotype: white

I Highlights

- Creating parent/child classes (inheritance)
I class Parent{

public:
void foo(); - protected
3
: . class Parent{
lclass_'. Child : public Parent { protected:
public: int x:
Child(); e %
1 }i

- reuse constructors

Child: :Child() : Parent()
{

}

// runs parent default constructor before itself

A long time ago in a galaxy far,
far away....

Story time

Large ears

Eves with vertical

Cat

sharp,
pointy Sensary
teeth in whiskers

rrnouth

Soft fur

Fetractible
claws and
padded feet

Tail

Copyright @ZoomSchool.com

Story time

111¢e

Story t

Story time

haz no fear, fear iz mindkillerz

Derived classes

Let's make this story into code!

To create create a child class from a parent
class, use a : in the (child) class declaration

childflass paren} class
class Dunecat : public ArrakianSandworm {
public:

Dunecat();
i

(See: dunecat.cpp)

Derived classes

In a parent/child class relationship, the child
gets all variables and functions of the parent

This allows you to build off previous work,
even if you need to modify it slightly

This also makes it easier to maintain code,

as changing it in the parent class can effect
all children (and the children's children)

Derived classes

Typically you use classes when you have
I multiple objects that are somewhat similar

You group the similar parts into a parent class
and the different parts into children classes

For examples all chairs have a flat surface to
sit on, but they come in different designs
(folding types that you are sitting on)

(or rolling types)

erived classes

Parent: ...

(Internal
combustion
engine) o

Level 16 Lurker
XP 1,400

Slime Devil

Medium immortal humanoid (devil, ooze)

HP 1213; Bloodied 61 Initiative +18
AC 30, Fortitude 28, Reflex 29, Will 28 Perception +13
Speed 6, swim b Darkvision
Resist 20 acid

TraiTs
Mercurial Body
The slime devil ignores difficult terrain and does not provoke

opportunity attacks by moving.

STANDARD ACTIONS

(1) Caustie Slam (acid) + At-Will
Attack: Melee 1 (one creature); +19 vs. Fortitude
Hit: 3d8 + 11 acid damage.
} Diabolical Engulfment (acid) + At-Will
Artack: Melee 1 (one Medium or smaller enemy); +19 vs. Reflex
Hit: The devil grabs the target and shifts 1 square into the
target's square. Until the grab ends, the target is dazed and
takes ongoing 10 acid damage. While the devil has the target
grabbed, attacks against the devil deal half damage to it and
half damage to the grabbed creature. When the devil moves,
it pulls the target with it. In addition, the target remains

grabbed, and the devil does not provoke an opportunity attack

from the target.

AD&D example

Level 27 Skirmisher
XP 11,000

Herald of Colorless Fire

Medium natural animate (construct, fire)

HP 244; Bloodied 122 Initiative +15
AC 41, Fortitude 37, Reflex 40, Will 37 Perception +19
Speed 8, fly 6
Resist 15 fire

Trauts

Frozen in Place
Whenever the herald of colorless fire takes cold damage. it
cannot use flickering flame until the end of its next turn.

STANDARD ACTIONS

(D) Caress of Flame (fire, force) # At-Will
Attack: Melee 1 (one creature); 32 vs, AC
Hit: 3d10 + 19 fire and force damage.
< Storm of Colorless Fire (fire, force) 4 Recharge =/ [if
Effect: The herald makes the following attack twice, shifting half
its speed between the attacks. The herald cannot target the
same creature with both attacks.
Attack: Close burst 1 (creatures in burst); +30 vs. Reflex
Hit: 4d10 + 16 fire and force da mage, and ongoing 15 fire

damage (save ends).

NERT o

SMARTPHONES

Picard uses Android

FERY DEMOTIVATIONAT, .com

Finding similarities

Consider these two sports:

ﬁ o

F 2y *

''''''''

] ", * 7 '. A - l ; o e - g

If you were going to create a C++ class for
these, what data would you store in them?

Finding similarities

Consider two classes you have made already:
Point
Complex

You can have a single parent of both of these
that stores the similar parts

This means you only need to type the code
once for both classes
(See: complexPoint.cpp)

Types + inheritance

What type of object is “soccer”?

It is (obviously) a “soccer”, but could it also
be classified as “sports”?

In fact, yes... both of these are legal:
soccer worldCup;

sports fun = worldCup;

“soccer” have more functionality than
“sports” (extra stuff), so they can act as one
(just pretend some boxes aren't there)

Types + inheritance

The reverse is not true (as we are using them):

You cannot say:

sports fun;
soccer worldCup;

worldCup = fun;

As the “worldCup” variable has more info
than the “fun” variable (the computer refuses
to just guess at the missing functions/data)
(see: convertClassTypes.cpp)

Somewhere, something went terribly wrong

Derived classes

The way data is stored in inherited classes
I is a bit more complex

Children objects have both a “child” class
part and a “parent” class part in their box

While the “parents” only have the “parent”
part

(See: childParent.cpp)

Constructors need to be run every time you
make an object...

Constructors + inheritance

Now that objects have multiple types what
constructors are being run?

Both actually (again)

(See: computerConstructor.cpp)

I Constructors + inheritance

If you do not specify what constructor to use,
I it will use the default constructor
(or give an error if this does not exist)

You can also specify a non-default constructor
by using a “:” after the child's constructor

Laptop: :Laptop(string p, string r, double 1) : Computer(p, r)
{

//cpu = p; // done in Computer constructor

//memory = r; // done 1n Computer constructor

batteryLife = 1;
} (See: computerConstructorV2.cpp)

protected

We know about two scopes for variables:
1. public (anyone, anywhere can use)
2. private (only my class can use)

But there is a third:
3. protected (me or my children can use)

If you think your children will modify/use
a variable, make it protected
(See: classScopes.cpp)

protected

Picture:

Red = private ll
Green = protected

Blue = public

Variables should be

either private or
protected

protected

While children technically inherit the private
I variables/functions, they cannot use them

So effectively, they do not inherit these

It is not considered bad practice to make
variables protected (unlike public)

Does access matter?
Yes, because computer viruses

Redefine functions

As children add functionality to a parent class,
I they may want to redefine some functions

This is different than overloading, where you
create multiple versions with the same name

When you redefine, you are basically
replacing an old function with a new version

(See: computerRedefine.cpp)

Redefine functions

After you have redefined a function,
I the default name will go to the child's version

However, you can still access the parent's
version by using “::” (class affiliation)

Laptop rightHere = Laptop(: , 3);
rightHere.displaySpecs();

// runs Laptop's version of displaySpecs
rightHere.Computer: :displaySpecs();

// runs Computer's version of displaySpecs

Not inherited

As we saw before, constructors are not really
I inherited (though they are called)

overloading operators will also not be
inherited (as computer cannot convert parent
into child class)

Destructors are also not inherited, but
the parent's version of the destructor will
alwaysrun (See: childDestructor.cpp)

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

