
Late binding
Ch 15.3

Highlights

- Late binding for functions

Review: Storing types

Last time we discussed how to properly store
a Child object inside a Parent (using pointer)

If we did not use a pointer, it would not work:

This will only copy the Parent's part of a
Child into itself (then delete child)

Early vs late binding

Static binding (or early) is when the computer
determines what to do when you hit the
compile button

Dynamic binding (late) is when the computer
figures out the most appropriate action
when it is actually running the program

Much of what we have done in the later parts
of class is similar to late binding

Dynamic binding

Consider this relationship:

Dynamic binding

Tell each of them to swing()!

Dynamic function binding

Who's swing function is being run?

Dynamic function binding

Who's swing function is being run?

Answer: the Person's

If you have normal variables, p=b only copies
b's Person parts into p's Person box, so you
still only have one swing function

Dynamic function binding

Who's swing function is being run now?

Dynamic function binding

Who's swing function is being run now?

Answer: the Person's still...

p is pointing to a full Boxer object, but it only
thinks there is the Person part due to type
(see: incorrectChildFunction.cpp)

Dynamic function binding

If we want the computer to not simply look
at the “type” of pointer and instead determine
what action to take based on the object...

... we need to add virtual (this is slower)

(see: dynamicBindingFunctions.cpp)

Dynamic function binding

If you use a function to run an object and
you want to use virtualization, you need to
pass-by-reference (i.e. use an &)

If you do not, it will make a copy an this
will ignore the Child's part
Always a Person

Can be Person,
Boxer or Baseballer

Dynamic function binding

If you want to use this virtualization:
1. Pass in a pointer
2. Pass by reference (i.e. use &)

Needs to be memory address so the computer
can look at what type is actually there

If you give it a Parent box, it cannot do
anything but run normal Parent stuff
(see: dynamicBindingFunctionV2.cpp)

virtual deconstructors

If you use Parent* to dynamically create a
instance of a Child class, by default it will
ONLY run the parent's deconstructor

With a virtual deconstructor it will run the
deconstructor for whatever it is pointing at
(the Child's deconstructor in this case)

Thus it avoids memory leak
(see: yetAnotherMemoryLeak.cpp)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

