
Pointers
Ch 9 & 13.1

Highlights

- pointers - dynamic arrays

- new & delete

object vs memory address

An object is simply a box in memory and if
you pass this into a function it makes a copy

A memory address is where a box is located
and if you pass this into a function, you can
change the variable everywhere

Memory address Object (box)
arrays int, double, char, ...
using & classes

(pointers)

Review: address vs value

Consider the following:

x is a variable (a box containing value 6)

&x is a memory address (sign pointing to box)
- Rather than giving the value inside the

box, this gives the whole box
(see: memAddress.cpp)

Review: address vs value

Similar to a URL and a webpage
-A URL is not a webpage, but a link to one

Webpage g;
cout << &g;

Pointers

Just as & goes from value (webpage) to
address (url), * goes the opposite:

Webpage g;
URL u = &g;
Webpage g2 = *u;

*u &g

Pointers

You can also think of pointers as “phone
numbers” and what they point to as “people”

1-800-presdnt
(pointer)

Trump
(object)

Pointers

If multiple people have the same “phone
number”, they call the same person (object)

1-800-presdnt
(pointer/
memory address)

Trump
(object)

1-800-presdnt

Pointers

A pointer is used to store a memory address
and denoted by a * (star!)

Here variable “xp” has type “integer pointer”

The * goes from address to variable (e.g.
like hitting ENTER on a url, or “call” on a
phone contact) (See: pointerBasics.cpp)

Pointers (phone analogy)

Make a phone-number for an person (int)

Make a contact name
called “jacky”

Make a person (int) “Jacqueline Wu” exist

Save Jacqueline Wu's phone number
into the “jacky” contact

(& = address of)

* = call up
Call the “jacky” contact (and
connect with Jacqueline Wu)

Pointers

It is useful to think of pointers as types:

Here I declared a variable “xp” of type “int*”

Just like arrays and [], the use of the * is
different for the declaration than elsewhere:

Declaration: the * is part of the type ()
Everywhere else: * follows the pointer/address

(i.e. puts 2 where xp is pointing to)

Pointers

Pointers and references allow you to change
anything into a memory address that you want

This can make it easier to share variables
across functions

You can also return a pointer from a function
(return links to variables)
(see: returnPointer.cpp)

Pointers

Why do we need pointers? (memory addresses
are stupid!!!)

Suppose we had the following class:

Will this work?

Pointers

As is, it will not... it is impossible to make a
box enclose two other equal sized boxes

The only way it can enclose something like
itself is that thing is smaller

Pointers

To do this we can use pointers instead!

A pointer does not store the whole class data,
it only remembers where it is (like a URL)

(See: person.cpp) (more on this shortly)

->

When dealing with classes, often you need to
deference (*) and access a member (.)

There is a shortcut to de-reference and call
a member (follow arrow and go inside a box)

You can replace (*var).x with var->x, so...

... same as ...

Person class

How would you make your grandmother?
How could you get your grandmother using
only yourself as a named object?

(See: personV2.cpp)

Pointers and memory
Ch 9 & 13.1

Boxes

What is comes next in this pattern?

Basic programming:
Ask for one box with a name

Intermediate programming:
Ask for multiple boxes with one name

Advanced programming: ???
???

Boxes

What is comes next in this pattern?

Basic programming:
Ask for one box with a name

Intermediate programming:
Ask for multiple boxes with one name

Advanced programming:
Ask for a box without giving it a name

new

Pointers are also especially useful to use with
the new command

The new command will create a variable (box)
of the type you want

The new integer has no separate name, just
part of xp (as array boxes part of array name)
(See: newMemory.cpp)

ask for box

new

What does this do?

new

What does this do?

Asking for a lot of boxes there...
(See: memoryLeak.cpp)

delete

When your program exits, the operating
system will clean up your memory

If you want to clean up your memory while
the program is running, use delete command

(See: deleteMemory.cpp)

delete

This is also a memory leak:

By the 3rd line, there is no link back to the box
on the 2nd line (dangling pointer)

There should be a “delete” for every “new”

delete

As you can manage how you want to create
new variables/boxes, using new/delete is
called dynamic memory

Before, the computer took care of memory
by creating variables/boxes when you use
a type then deleting when the function ends

Before

Now

delete

Memory management is a hard part of C++

You need to ensure you delete all your boxes
after you are done with them, but before the
pointer falls out of scope
(see: lostPointer.cpp)

Some other languages manage memory for you

Person class

The ability to have non-named boxes allows
you to more easily initialize pointers

(See: personV3.cpp)

Pointer to pointer

You can have multiple stars next to types:

Each star indicates how many arrows you
need to follow before you find the variable

int*** int** int* int

x

8

(See: pointerPointers.cpp)

What pointers can/cannot do

Pointers CAN do Pointers CANNOT do

nullptr

When you type this, what is ptr pointing at?

Answer: nullptr (or NULL)

nullptr

The null pointer is useful to indicate that you
are not yet pointing at anything

However, if you try to de-reference it (use *),
you will seg fault

Do not try to ask
the computer
to go here

(see: nullptr.cpp)

Multiple deletes

Every new should have one corresponding
delete command (one for one always)

The delete command gives the memory where
a variable is pointing back to the computer

However, the computer will get angry if you
try to give it places you do not own (i.e. twice)

Dynamic arrays

One of the downsides of arrays, is that we
needed to have a fixed size

To get around this we have been making them
huge and only using a part of it:

Then we need to keep track of how much
of the array we are currently using

Dynamic arrays

Arrays are memory addresses (if you pass
them into function you can modify original)

So we can actually make a dynamic array
in a very similar fashion

(this memory spot better to store large stuff)

Dynamic arrays

One important difference to normal pointers

When you delete an array you must do:

If you do the normal one, you will only delete
a single index (list[0]) and not the whole thing

(See: dynamicArrays.cpp)

need empty
square brackets

Functions & pointers

Another issues with arrays is that we could
not return them from functions

Since arrays are memory addresses, we would
only return a pointer to a local array

However, before this local array would just
fall out of scope, but no more as dynamic
memory stays until you manually delete it
(See: returnArrays.cpp)

Dynamic 2D arrays

Since pointers can act like arrays...
(i.e. int* acts like int [])

... int** can act like a two dimensional array

But need to use new to create each column
individually (but can change the size of them)

When deleting, same structure but backwards
(delete each column, then rows)

Dynamic 2D arrays

(See: raggedArray.cpp)

Dynamic 2D arrays

(See: raggedArray.cpp)

Reasons why pointer

Why use pointers?

1. Want to share variables (multiple names
for the same box)

2. Dynamic sized arrays
3. Return arrays from functions (or any case of

keep variable after scope ends)
(DOWN WITH GLOBAL VARIABLES)

4. Store classes within themselves
5. Automatically initialize the number 4 above

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

