
Dynamic memory in class
Ch 9, 11.4, 13.1 & Appendix F

Dynamic arrays

Arrays are memory addresses (if you pass
them into function you can modify original)

So we can actually make a dynamic array
in a very similar fashion

(this memory spot better to store large stuff)

Dynamic arrays

One important difference to normal pointers

When you delete an array you must do:

If you do the normal one, you will only delete
a single index (list[0]) and not the whole thing

(See: dynamicArrays.cpp)

need empty
square brackets

Dynamic 2D arrays

Since pointers can act like arrays...
(i.e. int* acts like int [])

... int** can act like a two dimensional array

But need to use new to create each column
individually (but can change the size of them)

When deleting, same structure but backwards
(delete each column, then rows)

Dynamic 2D arrays

(See: raggedArray.cpp)

Dynamic 2D arrays

(See: raggedArray.cpp)

Highlights

- Destructors

Review: constructors

Constructors are special functions that have
the same name as the class

Use a constructor to create an instance of the
class (i.e. an object of the blueprint)

Constructors + dynamic

What if we have a variable inside a class
that uses dynamic memory?

When do we stop using this class?
What do we do if the int* was private?

(See: classMemoryLeak.cpp)

Constructors + dynamic

Often, we might want a class to retain its
information until the instance is deleted

This means either:
1. Variable's scope ends

(automatically deleted)

2. You manually delete a dynamically
created class with the delete command

oops out of scope = gone

Destructors

Just as a constructor must run when a class
is created...
A destructor will always run when a class
object/instance/variable is deleted

Destructors (like constructors) must have
the same name as the class, but with a ~:

(See: classMemoryLeakFixed.cpp)

constructor

destructor

Destructors

A good analogy is file I/O, as there are 3 steps:

1. Open the file (read or write)
2. Use the file
3. Close the file

The constructor is basically requiring step 1
to happen

Do you want #3 to be automatic or explicit?

Destructors

The benefit of destructors is the computer
will run them for you when a variable ends

This means you do not need to explicitly
tell it when to delete the dynamic memory,
simply how it should be done

This fits better with classes as a blueprint
that is used in other parts of the program
(see: destructor.cpp)

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

