
Introduction
Ch 1



Object Oriented

Main focus is on objects/variables and how 
they interact (represented by me as boxes)

Reusable groups of actions (verbs) between 
objects are called functions (squiggly boxes)

These actions can take additional information 
called arguments, 
(an analogy is ordering at a restaurant; the 
ordering format is the same, different food) 



Object Oriented

Example:

The dot (period) shows that “teaching” 
is an action done by “James”

One format is:
object.function(argument, argument...);

James.teaches(CSci 1113);
teach(James, CSci 1113);



Banana Nut Bread

Ingredients
    * 3 or 4 ripe bananas
    * 1/3 cup melted butter
    * 1 cup sugar
    * 1 egg, beaten
    * 1 teaspoon vanilla
    * 1 teaspoon baking soda
    * Pinch of salt
    * 1 1/2 cups of all-purpose flour
    * 1 cup of nuts

Data
(Objects)



Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C). 
2. Mix butter into the mashed bananas 

in a large mixing bowl. 
3. Mix in the sugar, egg, and vanilla. 
4. Sprinkle the baking soda and salt over 

the mixture and mix in. 
5. Add the flour and nuts last, mix. 
6. Pour mixture into a buttered 4x8 inch loaf pan. 
7. Bake for 1 hour. Cool on a rack.



Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C). 
2. Mix butter into the mashed bananas 

in a large mixing bowl. 
3. Mix in the sugar, egg, and vanilla. 
4. Sprinkle the baking soda and salt over 

the mixture and mix in. 
5. Add the flour and nuts last, mix. 
6. Pour mixture into a buttered 4x8 inch loaf pan. 
7. Bake for 1 hour. Cool on a rack.



Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C). 
2. Mix butter into the mashed bananas 

in a large mixing bowl. 
3. Mix in the sugar, egg, and vanilla. 
4. Sprinkle the baking soda and salt over 

the mixture and mix in. 
5. Add the flour and nuts last, mix. 
6. Pour mixture into a buttered 4x8 inch loaf pan. 
7. Bake for 1 hour. Cool on a rack.



Banana Nut Bread

Pseudo code directions
1. oven.preheat(350);
2. bowl.mix(butter, bananas);
3. bowl.mix(sugar, egg, vanilla);
4. bowl.sprinkle(baking soda, salt);
5. bowl.mix(flour, nuts);
6. bowl.pour(pan);
7. pan.bake(60); 
8. pan.cool();



Banana Nut Bread

Pseudo code directions #2
1.  oven.preheat(350);
2.  bowl.add(butter, bananas);
3.  bowl.mix();
4.  bowl.add(sugar, egg, vanilla);
5.  bowl.mix();
6.  bowl.sprinkle(baking soda, salt);
7.  bowl.add(flour, nuts);
8.  bowl.mix();
9.  pan.pour(bowl);
10. pan.bake(60); 
11. pan.cool();



Banana Nut Bread

mashedBananas = bananas.mashed();
bowl.add(butter, mashedBananas);

same as:
bowl.add(butter, bananas.mashed());

Kitchen.bowl.add(butter, bananas.mashed());

hand.mix(butter, mashedBananas);
bowl.add(hand.mix(butter, mashedBananas));



Compiling

Hi
0101

Converting code to binary is 
called compiling



Compiling

Hi
0101

0101

Often this compiled code
Will not work on other
computers



Compiling



Compiling

C++ is a high level language
(human readable)

Compiling changes a high level
language into a low level language
that is easier for the computer
(computer cannot run high level)



Compiling

You must recompile the source code
every time you save a change
before running the program again

Your source code is the original 
language you wrote your program
in (the C++ code for us)



Compiling tl;dr

cook

directions

meal

eat

satiated

code

compile

1's and 0's
(program)

run
pretty colors



Compiling

In labs, the computers will come with a 
program called “geany” (which I will use too)

This program is where you can write code
and easily compile simple programs

To run it either click the terminal icon (      )
on the left bar or press Ctrl+Alt+T

Then type:    geany     (enter)



High level (C++)

#include <iostream>
using namespace std;

int main ()
{
  cout << "Hello World! ";
  return 0;
}

(See: helloWorld.cpp)



Low level (Assembly)

MODEL SMALL
IDEAL
STACK 100H

DATASEG
MSG DB 'Hello, World!', 13, '$'

CODESEG
Start:
MOV AX, @data
MOV DS, AX
MOV DX, OFFSET MSG
MOV AH, 09H ; output ascii string
INT 21H
MOV AX, 4C00H
INT 21H
END Start



Ease of use



Why C++?

Speed

Control

Libraries



Speed

Not all programming languages need to 
compile code as C++ (Java, Python)

Compiling can greatly increase speed
of a program



Control

C++ allows you great control over your data 
(and its interpretation)

This comes with a burden of responsibility 
to properly manage your data

If you mismanage your data, you are likely
to cause an error in your program



Libraries

C++ is an old language (older than me) and
this comes with pros and cons...

Some aspects are quirky to enable backwards
compatibility (and are honestly out of date)

Since it has been around for a long time, there
are lots of supporting libraries
(and the language continues to develop...)



Java/Python vs C++

C++Java/Python

Fast
Fine tunedGoes anywhere

Comfy



Magic 8 ball



Magic 8 ball

What a rip off!



Magic 8 ball



Keyboard input

cout << “word”
    -  prints “word” to the screen

cin >> x
    - store what is typed into “x” 
       (x is some object or data)

Can also do arithmetic using +, -, / and *
(See: inputOutput.cpp)



Types of errors

Syntax error - code will not compile
e.g.   cout(“hi”);

Runtime error - code crashes after starting
(see: runtimeError.cpp)

Logic error - code runs but doesn't return
the correct answer
(see:  logicError.cpp)



Syntax

Syntax is a fancy word for the “grammar” of 
programming  languages

The basic English syntax is:
(subject) (verb) (noun)
“I eat bananas” not “Bananas I eat”

The computer is VERY picky (and stubborn)  
about grammar, and will not understand you 
unless you are absolutely correct!



Avoid errors

To remove your program of bugs,
you should try to test your program on
a wide range of inputs

Typically it is useful to start with a small
piece of code that works and build up
rather than trying to program everything
and then debug for hours



Comments

Comments are ignored pieces of code
(computer will pretend they do not exist)

// denotes a single line that is commented
// (everything before hitting enter)

/* denotes the beginning of a comment
and the end of a comment is denoted by */



Additional facts

Braces denote a block of code  {    }
(belonging to a method, class, etc.)

“White space” is ignored, just as the your 
brain will ignore the bottom third of this slide
(this is why we need a semi-colon)


	Slide 1
	OOP
	Slide 3
	banana nut
	Slide 5
	Slide 6
	banana nut bread
	Slide 8
	Slide 9
	Slide 10
	portability
	Slide 12
	Slide 13
	compiling
	Slide 15
	Slide 16
	Slide 17
	java code
	assembly
	ease of use
	java lacks
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	8 ball
	Slide 28
	Slide 29
	errors
	Slide 31
	Slide 32
	Slide 33
	Slide 34

