
CSci 1113, Fall 2018
Lab Exercise 12 (Week 14): Graphics part 2

It's time to put all of your C++ knowledge to use to implement a substantial program. In this lab
exercise you will construct a graphical game that employs many of the object-oriented techniques
presented in class. If you have not completed the last from last week, you should work on that and
can get it checked off during this lab.

Warm-up
For the warm-ups, we will extend the game to include two objects inside the square (or “board”). To
do this we will make use of inheritance. If you have not finished the last lab, you should keep
working on it in this lab before doing these problems.

1) Making a parent
First make another class to represent all the moving objects inside the game. As this class represents
all moving objects, you should put the (x,y, speed) variables inside this parent class.

You should also have a copy of the movement() and draw() functions. Both of these functions will
be redefined in the child class(es), so the movement function can be blank (right now it is just a
placeholder). The draw() function can draw the basic shape of the player, but either pass in a color
or use a variable in the parent's draw function.

You should then modify the original class to inherit from this new parent. Change the code to reuse
as much of the parent's code as possible

2) Making an enemy
Make another child of this parent class to represent the enemies in the game. These are movable
objects, so they should inherit from the same parent class as the player. However, they should
appear a different color to differentiate them from your player. Right now the enemy's does not need
to move. Make an enemy at (0.5,0.5) with speed (0.5) and you should get:

1

Stretch

1) Charging enemy
Modify the enemy class to move towards the player. To do this find the x-distance and y-distance
between the enemy and player. Then choose whichever distance is greater and move in the direction
to shrink the distance (in other words, the enemy moves towards the player). If there is a tie, you
can pick either direction. Assume the player moves first and then the enemy reacts to this
movement. The enemy should only move if the player moves. (Note: if you move on top of the
enemy, the enemy should not move out from under you.)

Hint: You may want to redefine how the movement() function works for moving objects, players and
enemies.

2) Losing the game
If the enemy has either an x-distance or y-distance of less than 0.5, you should stop the game, as you
have lost. This means the enemy must have moved into the same space as you (the game is a 9x9
grid if you followed the directions with 0.5 speed and walls at 2 and -2).

Also, remove the old winning condition for getting to the top left. (Sadly you can only lose with
these changes.)

Workout

1) Growing enemies
Modify the enemy class to have them start in a weakened state. (Represent this by a different color.)
If you move on top of a weakened enemy, the enemy dies. Weakened enemies should not move.
(After it is no longer weakened it should move again.)

After 5 time steps, the enemy grow to full strength and instead you die if you walk on top of the
enemy. Add a victory condition if you manage to kill all the enemies. (This should be easy if the
only enemy is at (0.5, 0.5).)

2

2) Multiple enemies
Rather than having a single enemy at (0.5, 0.5), make 5 enemies spread randomly throughout the
board. Put one of them on the 9x9 grid. This means their x-position and y-position need to be either
-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5 or 2.

3

4

3) Power-ups
Add a power-up to the board. This should be another class, that you can inherit from the moving object class.
Have one power-up at the start of the game placed randomly on the board. If the player walks on top (or near)
the power-up, the player should become super-powerful for 3 moves. In this super-powerful state, the player
defeats fully grown enemies rather than losing to them.

Have the power-ups be a new color and change the color of the player when this power-up is in effect.

5

(now that have power-up, can move with it)

6

Challenge

1) Continuous game
Modify the game so that the power-up does not start in the game. Instead, there is a 10% chance that
the power-up spawns each movement (1% for continuous movement). Also have a 20% chance to
spawn a new enemy at a random square each movement (2% chance for continuous movement).

Do not spawn monsters on top of the player, as that would be mean... (It is okay if this slightly
reduces the chance that monster's spawn.)

2) Powerful monsters
Make a new monster type. This monster starts at full strength and still kills the player even when the
player has a power-up. However, make this monster die after moving 4 to 6 times (randomly).

3) Cloning power-ups
Make another power-up which when stepped on makes another copy of the player randomly on the
board (not occupied by a monster). Both copies of the player move in the direction indicated by the
key pressed. You can choose how the monsters try to move towards the player and it's clone.
However, even if the “original” player dies, the game still continuous until all copies of the clone are
dead.

Hint: Rather than separating variables between “Enemy” and “Player”, the “Game” class can have
just a single array (of pointers) that keeps all the enemies, players, clones and power-ups in the same
spot/variable.

Appendix

 In the “Gar3D” class:
drawLine(x0, y0, z0, x1, y1, z1) Draws a line from (x0, y0, z0) to (x1, y1, z1).

drawPrimitive(primitive, orientation, posx, posy,
posz, sizex, sizey, sizez)

Draws a primitive object. Available primitives
and orientations are shown in Gar3Dclass.hpp.

drawPrimitive(primitive, orientation, posx, posy,
posz, size)

Same as above, but scales by a single size

renderFrame() Renders drawn objects and updates the input
handle. If this function is not called each frame,
the program will not respond.

shouldQuit() Returns true when the program should exit. This
occurs when the user presses the escape key.

color(r, g, b) Sets the color of the objects drawn. May be
changed for each object. r, g and b are between
0 and 1 for “red”, “green” and “blue”.

input() Gets the input handle. Methods for the input
handle are described below in “InputHandle”.

lineSize(size) Sets the thickness of lines .

backgroundColor(r, g, b) Sets the background Sets the background color of the window. Value

7

color of the window. Value is only used when
renderFrame() is called.

is only used when renderFrame() is called.

backgroundColor(color) Same as above, but with a color type rather than
3 int types

deltaTime() Return the amount of time (in seconds) elapsed
during the previous frame (last renderFrame()
call).

 In the “InputHandle” class :
buttonPressed(Key) Returns true on the first frame the button is

pressed .

buttonHeld(Key) Return true on every frame the button is held
down .

buttonReleased(Key) Returns true on the frame the key was released .

mousePosition(x, y) Changes x and y variables to the mouse cursor's
x and y position in the window.

8

