
CSci 1113
Lab Exercise 5 (Week 6): Reference Parameters and Basic File I/O

So far, we've been getting our program input from the console keyboard using cin and displaying results on
the terminal display using cout. But limiting our program input to the keyboard is very restrictive. The
power of modern digital computing allows us to process huge volumes of data at high speed, so we need to
explore ways to input data from other sources such as data files. In this lab we will continue to practice
constructing functions, and will also begin our exploration of file input and output.

It is natural, but incorrect, to think of cin and cout as operations. For example, you might hear others say
"I'll just cout the value of x…" or, "you need to cin the person's last name…". cin and cout aren't
operations, they're objects. We'll be learning much more about objects in later weeks, but for now you can
think of an object as a sort of "uber variable" that also has functional behaviors. Each object is a specific
instance (variable) of a class of objects. For example, cin and cout are objects of the stream class.

So when we write something like:

int ivalue;
cout << "enter an integer value: ";

 cin >> ivalue;

the operations are input (>>) and output (<<). The stream-object named cin is the source of the data for
the input operation and, conversely, the stream-object named cout is the destination for the output data.

"Stream" is short for "character data stream" or a serial stream of characters. The terminology is descriptive.
A character stream is a temporal "flow" of data appearing one character at a time. This is easy to understand
when visualizing input from a keyboard: the data appear as they are being typed. Consider the following:

int ivalue1, ivalue2;
char punctuation;
cin >> ivalue1 >> punctuation >> ivalue2;

Then examine what happens if we type the following as program input:

12/15<enter>

The I/O device (in this case the keyboard) will produce a stream of characters (temporally ordered from left-
to-right):

'1' '2' '/' '1' '5' '\n'

and the cin object will convert those characters to appropriate data representations based on the type of the
other input operand(s). In this interesting case, the first operation requests an integer, so the cin object starts
accumulating digit characters from the stream until it encounters the '/' (which is not a valid integer digit). At
this point it completes the input operation by converting the digits it obtained from the stream ('1', '2') and
returns the integer value 12. The next operation will cause cin to continue scanning the stream looking for
any (single) character. The next element in the character stream is '/', so the cin object returns it and the
input operation stores it in the variable punctuation. The third input operation again asks for an integer,
so cin will process the stream until it encounters the '\n' and convert '1' and '5' to the integer value 15.

From the viewpoint of a program, files are processed by reading them as serial data streams. Although the
data exists statically on the storage device, it is read dynamically (much like a cassette tape… one character

after another starting with the first). This is beneficial to us, because all we need to do to input/output data
from/to a file is to change the stream-object. If we want to read data from a file, we need to declare an
ifstream object ("input file" stream) and, conversely, if we want to write data to a file we need to declare an
ofstream object ("output file" steam). After we've done the necessary "housekeeping" (like connecting the
stream to the file and checking that it is, indeed, connected), the input/output operations work exactly as they
have since we started using them! You simply replace the cin and/or cout operands with the applicable file
stream objects. For example,

#include <fstream>
ifstream myInputFile; // file stream object named myInputFile
ofstream myOutputFile; // file stream object named myOutputFile
int someInteger;

 .
 .
 .

ifstream >> someInteger; // read an integer from the file stream
 ofstream << someInteger; // and write it to the output file stream

Note that we don't "prompt" the file to give us data! There is no human available to ask for input, so we
instead implement a loop to continue reading data elements from the file until we reach the end.

Mystery-Box Challenge
Here is your next mystery-box challenge. Consider the following code segment and determine the console
output after main() is executed. Explain to one of your TAs how you arrived at your answer.

void onyx(int x, int& y)
{
 x = x*y;
 y = x;
}

int main()
{
 int y = 4;
 int x = 2;
 onyx(y,x);
 cout << x << ' ' << y << endl;
 return 0;
}

Warm-up

1) Date Input/Output
Write a short C++ program that will prompt the user and input three integer values (month, day, year) from
the console in a "date" format that includes '/' separator characters. e.g., 8/21/2013. Your program should
then output the date as 3 integer values in year, month, day order separated by commas. [Hint: your program
will need to read an integer, followed by a character, followed by an integer, and so on.]

Enter a date in mm/dd/yyyy format: 8/21/2013
Year, month, day: 2013,8,21

Stretch

1) Time Conversion

Clock time is generally expressed in terms of separate hour and minute values, e.g., 3:12. Write a C++
program that contains a user-defined function named timeToMinutes that will take two separate integer
arguments representing a time duration in hours and minutes and return the total number of minutes:

int timeToMinutes (int hours, int mins)

Your main program needs to do the following:
• Prompt the user and input a time duration from the console in the following format (including the

colon character):
hh:mm

• Call timeToMinutes to compute the equivalent number of minutes and display the value on the
terminal.

• Include a loop that will continue this process as long as the user wishes.

Example:
Enter a time duration (hh:mm) 0:21
Total minutes: 21
Continue? (y/n): y

Enter a time duration (hh:mm) 4:41
Total minutes: 281
Continue? (y/n): n

2) Time Conversion, Part 2

Now write a program to convert minutes to time (separate hours/minutes). Include a user-defined void
function named minutesToTime that will take an integer number of minutes and convert it to two separate
integer values that represent the equivalent number of hours and minutes. You must use reference parameters
for the hours and minutes. (Before proceeding further, discuss with your partner why this function uses
reference parameters.)

void minutesToTime(int minute_value, int& hours, int& mins)

Your main program needs to do the following:
• Prompt the user and take as input an integer number of minutes from the console.
• Call minutesToTime to compute the equivalent number of hours and minutes.

• Display the result on the terminal display using a 'colon' character to separate the hours/minutes.
Moreover, if the number of minutes is less than 10, print it out with a leading zero (so, e.g. 8 minutes
would be printed as 08 rather than 8).

• Include a loop that will continue this process as long as the user wishes.
• Example:

Enter a number of minutes: 60
Hours:minutes is 1:00
Continue? (y/n): y

Enter a number of minutes: 8
Hours:minutes is 0:08
Continue? (y/n): y

Enter a number of minutes: 337
Hours:minutes is 5:37
Continue? (y/n): n

3) Time Intervals

Write a C++ program that contains a user-defined void function named elapsedTime that will compute
the interval between two time values (separate hours/minutes):

 void elapsedTime(int h1, int m1, int h2, int m2, int& h, int& m)

Your function must determine the elapsed time regardless of the order of the values (i.e., the first input time
may be greater, less-than, or equal to the second input time).

The elapsed time should be expressed in hours/minutes and returned via the reference arguments h and m.
Note that the returned minutes value should not be larger than 59!

Your main program needs to do the following:
• Prompt the user and take as input two time values using the format hh:mm (including the colon).
• Call elapsedTime to compute the time interval.
• Display the result on the terminal display using a 'colon' character to separate the hours/minutes.
• Include a loop that will continue this process as long as the user wishes.

Examples:
Enter first time (hours:minutes) : 3:32
Enter second time (hours:minutes) : 3:45
Elapsed time is: 0:13
Continue? (y/n): y

Enter first time (hours:minutes) : 2:45
Enter second time (hours:minutes) : 2:32
Elapsed time is: 0:13
Continue? (y/n): y

Enter first time (hours:minutes) : 1:15
Enter second time (hours:minutes) : 14:15
Elapsed time is: 13:00
Continue? (y/n): n

Once you have your program written you and your partner should individually think up two additional test
cases for your program. Then share your test cases, and discuss why you think they are good test cases. (And
use them to test your program further.)

Workout

1) Flight Data Collection

A certain airline is required to report statistics regarding their on-time flight performance. You've been given
the following data sample consisting of the flight number, the scheduled arrival time, and the actual arrival
time for a few flights.

 Scheduled Actual
 Flight Number Arrival Time Arrival Time

NW1735 12:03 12:15
NW1395 12:56 13:21
UA8863 2:19 2:20
NW2852 2:45 3:15
UA2740 3:10 4:00
NW1568 3:10 3:11
NW9886 14:21 19:36
DL2981 18:36 19:21
UA882 5:15 5:15
UA231 7:16 7:44

Write a C++ program to record this data in a file. Specifically, write a program that will do the following:

• Open an output file with the filename flightData.dat and determine if the file was opened
successfully. If not, provide a suitable error message and exit the program.

• Prompt the user and input three strings for the flight number and the two arrival times. Include the
colon character ':' in the time values.

• Write the strings to the file. Each datum should be separated by a single space and the line should be
delimited (terminated) with a newline ('\n')

• Continue to input and write data to the file until the user inputs the sentinel string "end" (lowercase)
for the flight number. Do not write the sentinel value to the file!

• Close the file before exiting the program.

Example:
Enter the flight number: NW1735
Enter the scheduled/actual arrival times: 12:03 12:15

enter flight number: NW1395
enter scheduled/actual arrival times: 12:56 13:21

.

.
enter flight number: UA231
enter scheduled/actual arrival times: 7:16 7:44

enter flight number: end

Now test your program by entering all the flight data above. When you have finished entering the data, use a

text editor to view the flightData.dat file to ensure it is correct and properly formatted:

NW1735 12:03 12:15
NW1395 12:56 13:21
UA8863 2:19 2:20
NW2852 2:45 3:15
UA2740 3:10 4:00
NW1568 3:10 3:11
NW9886 14:21 19:36
DL2981 18:36 19:21
UA882 5:15 5:15
UA231 7:16 7:44

2) Flight Arrival Statistics

(This is a longer problem. Even if you do not get it finished during the lab, do as much as you can since it
involves many useful skills.)

Input the data from the file you created in Workout Exercise (1) and determine the average, maximum and
minimum flight delays for the flights recorded in the file. Specifically, write a C++ program that will do the
following:

• Solicit the name of a flight data file from the user and open it for reading.
• Determine if the file was opened successfully. If not, provide a suitable error message and exit the

program.
• Read all the records of the file and determine:

The average flight delay
The flight number and delay with the minimum delay
The flight number and delay with the maximum delay

Your program should use the functions you created in the Stretch exercises! (elapsedTime,
timeToMinutes, MinutesToTime).

Program Note: The ifstream.open(filename) function will not accept a string variable as an argument
without first being converted to a different form. After the user has input the filename, use the following in
your program to allow a string variable as the filename in the open function:

ifstream.open(stringvariable.c_str());

where ifstream is the name of your input file stream object and stringvariable is the name of the string
variable that contains the filename you wish to open.

Hint: This is a longer and more complicated program than the previous ones. Before writing code, carefully
outline what your program needs to do. Then write and test the program incrementally. Specifically, you
might want to start by writing the portion of the program that gets the flight data file name, opens that file for
reading, and counts the number of lines of flight data in it. Once you have that working add the portion for
computing and displaying the average. Etc.

Check
You and your partner should individually write down (i) one important thing you learned in this lab, and (ii)
one question you still have. When you both are done, share with each other what you have written.

Challenge
Here is an extra challenge problem. You should be able to complete the warm-up, stretch and workout
problems in the lab. Try this if you have extra time or would like additional practice outside of lab.

1) Craps

The casino game Table Craps is a dice game in which a number of betting options are available depending on
the eventual roll of a pair of dice. Players may bet "for" or "against" certain outcomes in a dizzying array of
combinations with varying odds. Each round of Craps begins with an initial roll of the dice (the so-called
'come-out' roll). The player 'wins' if the initial roll totals 7 or 11, and 'Craps out' (loses) if the roll is 2, 3 or
12. Any other initial roll (4, 5, 6, 8, 9, 10) becomes the point value. The player continues rolling dice until
either the point is matched or a 7 is rolled (whichever occurs first). If the point is matched the player wins, if
a 7 is rolled the player loses.

Write a program to simulate the game of Craps. Your program must do the following:
• Include a void function, diceRoll, that will call the rand() function and provide 2 pseudo-

random integer values in the range [1..6] representing a single roll of the dice. You need to use
reference parameters to return the individual values of each die.

• Include a second void function, displayRoll that will output the values of two individual die: n, m
to the console in the following format: [n,m] (include the brackets and comma).

• Simulate the initial (come-out) roll by calling the diceRoll function and then display the outcome
using the displayRoll function. Determine if the result is 'win', 'lose' or 'point' and display the
result.

• If a point is established, output a message to indicate the value of the point (4, 5, 6, 8, 9, 10) and
continue to simulate play until either a '7' is rolled or the point is matched. Display the result of each
roll as you continue. Finally, indicate if the player wins or loses at the end.

Here's a sample output:

Initial roll is: [6,5] = 11
 You win!

Initial roll is: [5,2] = 7
 You win!

Initial roll is: [1,1] = 2
 Craps! Sorry, you lose

Initial roll is: [4,4] = 8
 Point is 8. Roll again
 Roll is: [5,4] = 9
 Roll is: [5,1] = 6
 Roll is: [2,1] = 3
 Roll is: [4,2] = 6
 Roll is: [1,6] = 7 Sorry, you lose

Initial roll is: [5,1] = 6
 Point is 6. Roll again
 Roll is: [3,3] = 6 You win!

