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Background Problem: Movie Recommendations
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#YouTube

#personalized movie
recommendation

#How to find the movie that matches a particular user’s preference?

#Privacy issue: Recommendation leaks user’s personal information.



Background Problem: Movie Recommendations

Movie types
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Actually, recommendation is a online learning task:

User preference vector X(t) X() . =
8 g 8 a -+ Movie website , hecommendation

algorithm/learner
—>
...... X(t+2) X(t+1 4
(t+2) X(t+1) Give feedback/reward N
to the learner

Update
algorithm

»

Recommend a movie to the user

Goal: design a learning algorithm that can achieve recommendation and
preserve user personal information.



Online Learning/Contextual Bandit

® A gambler faces k slot-machines(arms).
® Each machine provides a random reward
from unknown distribution specific to that

machine.

® At each time slot, the gambler select one

machine to play, and get a random reward.
® Goal: how to maximize the sum of rewards

over all time slots

The stochastic bandit problem

Known parameters: number of arms K and (possibly) number of rounds n > K.
Unknown parameters: K probability distributions vy,..., vk on [0, 1].

For sach roandt=1.2,...

(1) the forecaster chooses I+ € {1,...,K};
(2) given I;, the environment draws the reward Xy, ; ~ vy, indepen-
dently from the past and reveals it to the forecaster.




Online Learning/Contextual Bandit

The stochastic bandit problem

Known parameters: number of arms K and (possibly) number of rounds n > K.
Unknown parameters: K probability distributions vy,...,vg on [0, 1].

For each round t=1,2,...

(1) the forecaster chooses Iy € {1,...,K};
(2) given I;, the environment draws the reward X, ; ~ vy, indepen-
dently from the past and reveals it to the forecaster.

For 2 =1,..., K we denote by p; the mean of v; (mean reward of arm
i). Let
i = mex_ ji and i¥ € argmax [i; .
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In the stochastic setting, it is easy to see that the pseudo-regret can be

= nu’” ZE .F'J”It

t=1

written as

Goal: Design a learning algorithm for the gambler to minimize the
regret.



Online Learning/Contextual Bandit

For i =1,..., K we denote by u; the mean of v; (mean reward of arm
i). Let
* -5
i = mex. and 1 € argmax [i; .
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In the stochastic setting, it is easy to see that the pseudo-regret can be

written as
— n.ru ZE #It
t=1

Formalize Recommendation as a bandit problem::
® At each time slot, recommender receives new user's contextual information.
® Choose a movie (arm) to recommend.

® Receive a random reward of recommended movie.

® Update strategy for next user.



Differential Privacy

Differential Privacy

X: The data universe.
D c X: The dataset (one element per person)

Definition: An algorithm M is e-differentially
private if for all pairs of neighboring datasets

D, D', and for all outputs x:
PriM(D) = x] < (1 + ¢€) PrIM(D") = x]

Laplace Mechanism to achieve differential privacy:
M(D) = f(D)+Lap(b)

\ Laplace noise
directly query the database D



Algorithm

Part 1. Offline Estimation

1. Partition n users into m groups based on their contextual similarity.
2. Recommend all movies to them and gather rewards.
3. Compute average reward of different movie.

Part 2. Online Recommendation
At each time slot:

1. Receive new user, compute which group it belongs to.
2. Recommend the movie with highest average reward to the user.

3. Observe reward.
4. Add Laplace noise to this reward and update average reward.

Performance Metric:

n
Minimize the regret: R, =nu* — Z X [MJ :
t=1



Experiments: Set Up

1. Dateset: the MovielLens dataset collected by the GroupLens Research
Project at the University of Minnesota
- 943 users

- 5 movie genres

2. Generate Bernoulli distribution to simulate user's reward/feedback.

3.Plot the regret function to show the performance of the proposed

algorithm.



Experiments: Results
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