
Comparing Feature Vectors for Sentiment
Analysis of Short Texts

Mitch Kinney

University of Minnesota

December 5, 2017

Analyzing non-numerical data

When dealing with non-numerical data such as text or images a
common method to do classification is:

Create a numerical representation of the data

Use existing methods to build a model

Much focus of today’s research is on finding good combinations.
In text:

Word2vec with a Convolutional Neural Network (Santos and
Gatti, 2014)

Bag-of-words with Naive Bayes (Go et al., 2009)

In images:

Pixel brightness with Fast Fourier Transform (Rodriguez et
al., 2008)

Spatial Pyramid with Label Consistent Kernel-SVD (Jiang et
al., 2011, Lazebnik et al., 2006)

Analyzing non-numerical data

I am interested in a simpler combination as well as trying out
doc2vec which is an extension of word2vec

My project will use doc2vec and bag-of-words to create a
numerical representation of short text data

Then use support vector machines (SVM) with linear and rbf
kernel to do classification

Explaining doc2vec

Based on word2vec which finds semantic relationships between words

Word2vec uses a neural network to build representations by
attempting to predict words in a sentence given all other words

Word2vec reference: (Mikolov et al., 2013)

Explaining doc2vec

Shifting window to update both word and paragraph vector, but
paragraph vector is kept through all windows to add context

When inferring doc2vec vectors, word vectors are held constant while
new paragraph vectors are added and trained

Doc2vec reference: (Le et al., 2014)

Model flow chart

Clean
Tweet

Twitter
Feature
Vector

Train SVMClassifyEnd

Dataset and libraries

STS (Stanford Twitter Sentiment corpus)

1.6 million tweets gathered from searching ”:)” and ”:(”.

Automatically labeled positive or negative based on whether a
happy or sad face is attached to the tweet.

I am able to use about 200,000 tweets

I will use Python as my coding language. And the main packages I
will use is gensim which implements doc2vec and liblinear which
implements linear SVM.

liblinear refernce: Fan et al., 2008

Results

Initial results using 200,000 tweets with 70% training, 20% testing
and 10% validation

Method Accuracy

Doc2vec 76.01%
Bag-of-words 79.12%

SVD 65.89%

Recall state of the art is about ∼85%

Difficulties

I would like to try a form of Kernel PCA using the rbf kernel

Need to solve an eigenvalue/eigenvector problem for a square
matrix with dimension equal to sample size

For short text data this needs to be large (>10,000 samples)

Why is bag-of-words beating doc2vec despite claims of superiority?

Left to do

Possibly can try an over complicated Kernel PCA. For each
element in the kernel matrix

ki ,j = φ(xi)
Tφ(xj)

where xi , xj are the sample feature vectors.

Kernel trick is never having to compute φ(xi)

Possibly can manually compute φ(xi)

For instance if x = (x1, x2) and y = (y1, y2) and I’m using the rbf
kernel (from TenaliRaman on Stack Exchange)...

k(x , y) = exp(||x − y ||22)

= exp(||x ||22) exp(||y ||22) exp(2xT y)

= exp(||x ||22) exp(||y ||22)
∞∑
n=0

(2xT y)n

n

Left to do

Another interesting thing to try is to see when doc2vec ”tops out”
for length of feature vector

For instance keeping fixed all other tuning parameters, what is
the minimum length that doc2vec will still do well

When can we stop adding parameters?

Will doc2vec work better than bag-of-words for documents with
longer text?

Are tweets too short for doc2vec to capture any relationship
among the words?

In a previous talk authors used the news20 dataset which were
very long texts so I would like to compare the two again for
this dataset

Thank you!

