
11 Multilayer Perceptrons

The multilayer perceptron is an artificial neural network structure

and is a nonparametric estimator that can be used for classification

and regression. We discuss the backpropagation algorithm to train

a multilayer perceptron for a variety of applications.

11.1 Introduction

Artificial neural network models, one of which is the perceptron

we discuss in this chapter, take their inspiration from the brain. There

are cognitive scientists and neuroscientists whose aim is to understand

the functioning of the brain (Posner 1989; Thagard 2005), and toward

this aim, build models of the natural neural networks in the brain and

make simulation studies.

However, in engineering, our aim is not to understand the brain per

se, but to build useful machines. We are interested in artificial neuralartificial neural

networks networks because we believe that they may help us build better computer

systems. The brain is an information processing device that has some

incredible abilities and surpasses current engineering products in many

domains—for example, vision, speech recognition, and learning, to name

three. These applications have evident economic utility if implemented

on machines. If we can understand how the brain performs these func-

tions, we can define solutions to these tasks as formal algorithms and

implement them on computers.

The human brain is quite different from a computer. Whereas a com-

puter generally has one processor, the brain is composed of a very large

(1011) number of processing units, namely, neurons, operating in parallel.neurons

Though the details are not known, the processing units are believed to be

234 11 Multilayer Perceptrons

much simpler and slower than a processor in a computer. What also

makes the brain different, and is believed to provide its computational

power, is the large connectivity. Neurons in the brain have connections,

called synapses, to around 104 other neurons, all operating in parallel.synapses

In a computer, the processor is active and the memory is separate and

passive, but it is believed that in the brain, both the processing and mem-

ory are distributed together over the network; processing is done by the

neurons, and the memory is in the synapses between the neurons.

11.1.1 Understanding the Brain

According to Marr (1982), understanding an information processing sys-

tem has three levels, called the levels of analysis:levels of analysis

1. Computational theory corresponds to the goal of computation and an

abstract definition of the task.

2. Representation and algorithm is about how the input and the output

are represented and about the specification of the algorithm for the

transformation from the input to the output.

3. Hardware implementation is the actual physical realization of the sys-

tem.

One example is sorting: The computational theory is to order a given

set of elements. The representation may use integers, and the algorithm

may be Quicksort. After compilation, the executable code for a particular

processor sorting integers represented in binary is one hardware imple-

mentation.

The idea is that for the same computational theory, there may be mul-

tiple representations and algorithms manipulating symbols in that repre-

sentation. Similarly, for any given representation and algorithm, there

may be multiple hardware implementations. We can use one of vari-

ous sorting algorithms, and even the same algorithm can be compiled

on computers with different processors and lead to different hardware

implementations.

To take another example, ‘6’, ‘VI’, and ‘110’ are three different repre-

sentations of the number six. There is a different algorithm for addition

depending on the representation used. Digital computers use binary rep-

resentation and have circuitry to add in this representation, which is one

11.1 Introduction 235

particular hardware implementation. Numbers are represented differ-

ently, and addition corresponds to a different set of instructions on an

abacus, which is another hardware implementation. When we add two

numbers in our head, we use another representation and an algorithm

suitable to that representation, which is implemented by the neurons. But

all these different hardware implementations—for example, us, abacus,

digital computer—implement the same computational theory, addition.

The classic example is the difference between natural and artificial fly-

ing machines. A sparrow flaps its wings; a commercial airplane does not

flap its wings but uses jet engines. The sparrow and the airplane are

two hardware implementations built for different purposes, satisfying

different constraints. But they both implement the same theory, which is

aerodynamics.

The brain is one hardware implementation for learning or pattern recog-

nition. If from this particular implementation, we can do reverse engi-

neering and extract the representation and the algorithm used, and if

from that in turn, we can get the computational theory, we can then use

another representation and algorithm, and in turn a hardware implemen-

tation more suited to the means and constraints we have. One hopes our

implementation will be cheaper, faster, and more accurate.

Just as the initial attempts to build flying machines looked very much

like birds until we discovered aerodynamics, it is also expected that the

first attempts to build structures possessing brain’s abilities will look

like the brain with networks of large numbers of processing units, until

we discover the computational theory of intelligence. So it can be said

that in understanding the brain, when we are working on artificial neural

networks, we are at the representation and algorithm level.

Just as the feathers are irrelevant to flying, in time we may discover

that neurons and synapses are irrelevant to intelligence. But until that

time there is one other reason why we are interested in understanding

the functioning of the brain, and that is related to parallel processing.

11.1.2 Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of processors have

been commercially available. The software for such parallel architectures,

however, has not advanced as quickly as hardware. The reason for this

is that almost all our theory of computation up to that point was based

236 11 Multilayer Perceptrons

on serial, one-processor machines. We are not able to use the parallel

machines we have efficiently because we cannot program them efficiently.

There are mainly two paradigms for parallel processing: In Single In-parallel processing

struction Multiple Data (SIMD) machines, all processors execute the same

instruction but on different pieces of data. In Multiple Instruction Mul-

tiple Data (MIMD) machines, different processors may execute different

instructions on different data. SIMD machines are easier to program be-

cause there is only one program to write. However, problems rarely have

such a regular structure that they can be parallelized over a SIMD ma-

chine. MIMDmachines are more general, but it is not an easy task to write

separate programs for all the individual processors; additional problems

are related to synchronization, data transfer between processors, and so

forth. SIMD machines are also easier to build, and machines with more

processors can be constructed if they are SIMD. In MIMD machines, pro-

cessors are more complex, and a more complex communication network

should be constructed for the processors to exchange data arbitrarily.

Assume now that we can have machines where processors are a lit-

tle bit more complex than SIMD processors but not as complex as MIMD

processors. Assume we have simple processors with a small amount of

local memory where some parameters can be stored. Each processor im-

plements a fixed function and executes the same instructions as SIMD

processors; but by loading different values into the local memory, they

can be doing different things and the whole operation can be distributed

over such processors. We will then have what we can call Neural Instruc-

tion Multiple Data (NIMD) machines, where each processor corresponds

to a neuron, local parameters correspond to its synaptic weights, and the

whole structure is a neural network. If the function implemented in each

processor is simple and if the local memory is small, then many such

processors can be fit on a single chip.

The problem now is to distribute a task over a network of such proces-

sors and to determine the local parameter values. This is where learning

comes into play: We do not need to program such machines and deter-

mine the parameter values ourselves if such machines can learn from

examples.

Thus, artificial neural networks are a way to make use of the parallel

hardware we can build with current technology and—thanks to learning—

they need not be programmed. Therefore, we also save ourselves the

effort of programming them.

In this chapter, we discuss such structures and how they are trained.

11.2 The Perceptron 237

Figure 11.1 Simple perceptron. xj , j = 1, . . . , d are the input units. x0 is the

bias unit that always has the value 1. y is the output unit. wj is the weight of

the directed connection from input xj to the output.

Keep in mind that the operation of an artificial neural network is a math-

ematical function that can be implemented on a serial computer—as it

generally is—and training the network is not much different from statisti-

cal techniques that we have discussed in the previous chapters. Thinking

of this operation as being carried out on a network of simple processing

units is meaningful only if we have the parallel hardware, and only if the

network is so large that it cannot be simulated fast enough on a serial

computer.

11.2 The Perceptron

The perceptron is the basic processing element. It has inputs that mayperceptron

come from the environment or may be the outputs of other perceptrons.

Associated with each input, xj ∈ 	, j = 1, . . . , d, is a connection weight,connection weight

or synaptic weight wj ∈ 	, and the output, y , in the simplest case is asynaptic weight

weighted sum of the inputs (see figure 11.1):

y =
d∑
j=1

wjxj +w0(11.1)

w0 is the intercept value to make the model more general; it is generally

modeled as the weight coming from an extra bias unit, x0, which is alwaysbias unit

238 11 Multilayer Perceptrons

+1. We can write the output of the perceptron as a dot product
y = wTx(11.2)

where w = [w0, w1, . . . , wd]
T and x = [1, x1, . . . , xd]T are augmented vec-

tors to include also the bias weight and input.

During testing, with given weights, w, for input x, we compute the

output y . To implement a given task, we need to learn the weights w, the

parameters of the system, such that correct outputs are generated given

the inputs.

When d = 1 and x is fed from the environment through an input unit,

we have

y = wx+w0

which is the equation of a line with w as the slope and w0 as the inter-

cept. Thus this perceptron with one input and one output can be used

to implement a linear fit. With more than one input, the line becomes a

(hyper)plane, and the perceptron with more than one input can be used

to implement multivariate linear fit. Given a sample, the parameters wj
can be found by regression (see section 5.8).

The perceptron as defined in equation 11.1 defines a hyperplane and as

such can be used to divide the input space into two: the half-space where

it is positive and the half-space where it is negative (see chapter 10). By

using it to implement a linear discriminant function, the perceptron can

separate two classes by checking the sign of the output. If we define s(·)
as the threshold functionthreshold function

s(a) =
{

1 if a > 0

0 otherwise
(11.3)

then we can

choose

{
C1 if s(wTx) > 0

C2 otherwise

Remember that using a linear discriminant assumes that classes are

linearly separable. That is to say, it is assumed that a hyperplanewTx = 0

can be found that separates xt ∈ C1 and xt ∈ C2. If at a later stage we
need the posterior probability—for example, to calculate risk—we need

to use the sigmoid function at the output as

o = wTx

y = sigmoid(o) = 1

1+ exp[−wTx]
(11.4)

11.2 The Perceptron 239

Figure 11.2 K parallel perceptrons. xj , j = 0, . . . , d are the inputs and yi, i =
1, . . . , K are the outputs. wij is the weight of the connection from input xj to

output yi . Each output is a weighted sum of the inputs. When used for K-class

classification problem, there is a postprocessing to choose the maximum, or

softmax if we need the posterior probabilities.

When there are K > 2 outputs, there are K perceptrons, each of which

has a weight vector wi (see figure 11.2)

yi =
d∑
j=1

wijxj +wi0 = wT
i x

y = Wx(11.5)

where wij is the weight from input xj to output yi . W is the K × (d + 1)

weight matrix of wij whose rows are the weight vectors of the K percep-

trons. When used for classification, during testing, we

choose Ci if yi =max
k
yk

In the case of a neural network, the value of each perceptron is a local

function of its inputs and its synaptic weights. However, in classification,

if we need the posterior probabilities (instead of just the code of the

winner class) and use the softmax, we also need the values of the other

outputs. So, to implement this as a neural network, we can see this as

a two-stage process, where the first stage calculates the weighted sums,

and the second stage calculates the softmax values; but we still denote

240 11 Multilayer Perceptrons

this as a single layer of output units:

oi = wT
i x

yi = expoi∑
k expok

(11.6)

Remember that by defining auxiliary inputs, the linear model can also

be used for polynomial approximation; for example, define x3 = x21, x4 =
x22, x5 = x1x2 (section 10.2). The same can also be used with perceptrons

(Durbin and Rumelhart 1989). In section 11.5, we see multilayer percep-

trons where such nonlinear functions are learned from data in a “hidden”

layer instead of being assumed a priori.

Any of the methods discussed in chapter 10 on linear discrimination

can be used to calculate wi , i = 1, . . . , K offline and then plugged into the

network. These include parametric approach with a common covariance

matrix, logistic discrimination, discrimination by regression, and support

vector machines. In some cases, we do not have the whole sample at hand

when training starts, and we need to iteratively update parameters as new

examples arrive; we discuss this case of online learning in section 11.3.

Equation 11.5 defines a linear transformation from a d-dimensional

space to a K-dimensional space and can also be used for dimensional-

ity reduction if K < d. One can use any of the methods of chapter 6 to

calculate W offline and then use the perceptrons to implement the trans-

formation, for example, PCA. In such a case, we have a two-layer network

where the first layer of perceptrons implements the linear transformation

and the second layer implements the linear regression or classification in

the new space. We note that because both are linear transformations,

they can be combined and written down as a single layer. We will see the

more interesting case where the first layer implements nonlinear dimen-

sionality reduction in section 11.5.

11.3 Training a Perceptron

The perceptron defines a hyperplane, and the neural network perceptron

is just a way of implementing the hyperplane. Given a data sample, the

weight values can be calculated offline and then when they are plugged

in, the perceptron can be used to calculate the output values.

In training neural networks, we generally use online learning where we

are not given the whole sample, but we are given instances one by one

and would like the network to update its parameters after each instance,

11.3 Training a Perceptron 241

adapting itself slowly in time. Such an approach is interesting for a num-

ber of reasons:

1. It saves us the cost of storing the training sample in an external mem-

ory and storing the intermediate results during optimization. An ap-

proach like support vector machines (chapter 13) may be quite costly

with large samples, and in some applications, we may prefer a simpler

approach where we do not need to store the whole sample and solve a

complex optimization problem on it.

2. The problem may be changing in time, which means that the sample

distribution is not fixed, and a training set cannot be chosen a priori.

For example, we may be implementing a speech recognition system

that adapts itself to its user.

3. There may be physical changes in the system. For example, in a robotic

system, the components of the system may wear out, or sensors may

degrade.

In online learning, we do not write the error function over the wholeonline learning

sample but on individual instances. Starting from random initial weights,

at each iteration we adjust the parameters a little bit to minimize the

error, without forgetting what we have previously learned. If this error

function is differentiable, we can use gradient descent.

For example, in regression the error on the single instance pair with

index t , (xt , r t), is

Et(w|xt , r t) = 1

2
(r t − yt)2 = 1

2
[r t − (wTxt)]2

and for j = 0, . . . , d, the online update is

Δwt
j = η(rt − yt)xtj(11.7)

where η is the learning factor, which is gradually decreased in time for

convergence. This is known as stochastic gradient descent.stochastic

gradient descent Similarly, update rules can be derived for classification problems using

logistic discrimination where updates are done after each pattern, instead

of summing them and doing the update after a complete pass over the

training set. With two classes, for the single instance (xt , r t) where r ti = 1

if xt ∈ C1 and r ti = 0 if xt ∈ C2, the single output is

yt = sigmoid(wTxt)

242 11 Multilayer Perceptrons

and the cross-entropy is

Et(w|xt , r t) = −r t logyt − (1− r t) log(1− yt)

Using gradient descent, we get the following online update rule for

j = 0, . . . , d:

Δwt
j = η(rt − yt)xtj(11.8)

When there are K > 2 classes, for the single instance (xt , r t) where

r ti = 1 if xt ∈ Ci and 0 otherwise, the outputs are

yti =
expwT

i x
t∑

k expw
T
kx

t

and the cross-entropy is

Et({wi}i|xt , r t) = −
∑
i

r ti logy
t
i

Using gradient descent, we get the following online update rule, for

i = 1, . . . , K, j = 0, . . . , d:

Δwt
ij = η(rti − yti)xtj(11.9)

which is the same as the equations we saw in section 10.7 except that we

do not sum over all of the instances but update after a single instance.

The pseudocode of the algorithm is given in figure 11.3, which is the

online version of figure 10.8.

Both equations 11.7 and 11.9 have the form

Update = LearningFactor· (DesiredOutput − ActualOutput) · Input(11.10)

Let us try to get some insight into what this does. First, if the actual

output is equal to the desired output, no update is done. When it is

done, the magnitude of the update increases as the difference between

the desired output and the actual output increases. We also see that if

the actual output is less than the desired output, update is positive if

the input is positive and negative if the input is negative. This has the

effect of increasing the actual output and decreasing the difference. If

the actual output is greater than the desired output, update is negative if

the input is positive and positive if the input is negative; this decreases

the actual output and makes it closer to the desired output.

11.4 Learning Boolean Functions 243

For i = 1, . . . , K

For j = 0, . . . , d

wij ← rand(−0.01,0.01)
Repeat

For all (xt , r t) ∈ X in random order
For i = 1, . . . , K

oi ← 0

For j = 0, . . . , d

oi ← oi +wijxtj
For i = 1, . . . , K

yi ← exp(oi)/
∑
k exp(ok)

For i = 1, . . . , K

For j = 0, . . . , d

wij ← wij + η(rti − yi)xtj
Until convergence

Figure 11.3 Perceptron training algorithm implementing stochastic online gra-

dient descent for the case with K > 2 classes. This is the online version of the

algorithm given in figure 10.8.

When an update is done, its magnitude depends also on the input. If

the input is close to 0, its effect on the actual output is small and there-

fore its weight is also updated by a small amount. The greater an input,

the greater the update of its weight.

Finally, the magnitude of the update depends on the learning factor, η.

If it is too large, updates depend too much on recent instances; it is as if

the system has a very short memory. If this factor is small, many updates

may be needed for convergence. In section 11.8.1, we discuss methods to

speed up convergence.

11.4 Learning Boolean Functions

In a Boolean function, the inputs are binary and the output is 1 if the

corresponding function value is true and 0 otherwise. Therefore, it can

be seen as a two-class classification problem. As an example, for learning

to AND two inputs, the table of inputs and required outputs is given in

table 11.1. An example of a perceptron that implements AND and its

244 11 Multilayer Perceptrons

Table 11.1 Input and output for the AND function.

x1 x2 r

0 0 0

0 1 0

1 0 0

1 1 1

x0=+1 x1 x2

y

-1.5
+1+1

x1

x2

+

(0,0)

(1,1)

(1,0)

(0,1)

1.5

1.5

Figure 11.4 The perceptron that implements AND and its geometric interpre-

tation.

geometric interpretation in two dimensions is given in figure 11.4. The

discriminant is

y = s(x1 + x2 − 1.5)

that is, x = [1, x1, x2]T andw = [−1.5,1,1]T . Note that y = s(x1+x2−1.5)
satisfies the four constraints given by the definition of AND function in

table 11.1, for example, for x1 = 1, x2 = 0, y = s(−0.5) = 0. Similarly it

can be shown that y = s(x1 + x2 − 0.5) implements OR.

Though Boolean functions like AND and OR are linearly separable and

are solvable using the perceptron, certain functions like XOR are not. The

table of inputs and required outputs for XOR is given in table 11.2. As

can be seen in figure 11.5, the problem is not linearly separable. This

can also be proved by noting that there are no w0, w1, and w2 values that

11.5 Multilayer Perceptrons 245

Table 11.2 Input and output for the XOR function.

x1 x2 r

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Figure 11.5 XOR problem is not linearly separable. We cannot draw a line where

the empty circles are on one side and the filled circles on the other side.

satisfy the following set of inequalities:

w0 ≤ 0

w2+ w0 > 0

w1+ w0 > 0

w1+ w2+ w0 ≤ 0

This result should not be very surprising to us since the VC dimension

of a line (in two dimensions) is three. With two binary inputs there are

four cases, and thus we know that there exist problems with two inputs

that are not solvable using a line; XOR is one of them.

11.5 Multilayer Perceptrons

A perceptron that has a single layer of weights can only approximate lin-

ear functions of the input and cannot solve problems like the XOR, where

the discrimininant to be estimated is nonlinear. Similarly, a perceptron

246 11 Multilayer Perceptrons

cannot be used for nonlinear regression. This limitation does not apply

to feedforward networks with intermediate or hidden layers between thehidden layers

input and the output layers. If used for classification, such multilayermultilayer

perceptrons perceptrons (MLP) can implement nonlinear discriminants and, if used

for regression, can approximate nonlinear functions of the input.

Input x is fed to the input layer (including the bias), the “activation”

propagates in the forward direction, and the values of the hidden units

zh are calculated (see figure 11.6). Each hidden unit is a perceptron by

itself and applies the nonlinear sigmoid function to its weighted sum:

zh = sigmoid(wT
hx) =

1

1+ exp
[
−
(∑d

j=1whjxj +wh0
)] , h = 1, . . . ,H(11.11)

The output yi are perceptrons in the second layer taking the hidden

units as their inputs

yi = vTi z =
H∑
h=1

vihzh + vi0(11.12)

where there is also a bias unit in the hidden layer, which we denote by z0,

and vi0 are the bias weights. The input layer of xj is not counted since

no computation is done there and when there is a hidden layer, this is a

two-layer network.

As usual, in a regression problem, there is no nonlinearity in the output

layer in calculating y . In a two-class discrimination task, there is one sig-

moid output unit and when there are K > 2 classes, there are K outputs

with softmax as the output nonlinearity.

If the hidden units’ outputs were linear, the hidden layer would be of no

use: linear combination of linear combinations is another linear combi-

nation. Sigmoid is the continuous, differentiable version of thresholding.

We need differentiability because the learning equations we will see are

gradient-based. Another sigmoid (S-shaped) nonlinear basis function that

can be used is the hyperbolic tangent function, tanh, which ranges from

−1 to +1, instead of 0 to +1. In practice, there is no difference between

using the sigmoid and the tanh. Still another possibility is the Gaussian,

which uses Euclidean distance instead of the dot product for similarity;

we discuss such radial basis function networks in chapter 12.

The output is a linear combination of the nonlinear basis function val-

ues computed by the hidden units. It can be said that the hidden units

make a nonlinear transformation from the d-dimensional input space to

11.5 Multilayer Perceptrons 247

Figure 11.6 The structure of a multilayer perceptron. xj , j = 0, . . . , d are the

inputs and zh, h = 1, . . . , H are the hidden units where H is the dimensionality

of this hidden space. z0 is the bias of the hidden layer. yi, i = 1, . . . , K are the

output units. whj are weights in the first layer, and vih are the weights in the

second layer.

the H-dimensional space spanned by the hidden units, and, in this space,

the second output layer implements a linear function.

One is not limited to having one hidden layer, and more hidden layers

with their own incoming weights can be placed after the first hidden layer

with sigmoid hidden units, thus calculating nonlinear functions of the

first layer of hidden units and implementing more complex functions of

the inputs. In practice, people rarely go beyond one hidden layer since

analyzing a network with many hidden layers is quite complicated; but

sometimes when the hidden layer contains too many hidden units, it may

be sensible to go to multiple hidden layers, preferring “long and narrow”

networks to “short and fat” networks.

248 11 Multilayer Perceptrons

11.6 MLP as a Universal Approximator

We can represent any Boolean function as a disjunction of conjunctions,

and such a Boolean expression can be implemented by a multilayer per-

ceptron with one hidden layer. Each conjunction is implemented by one

hidden unit and the disjunction by the output unit. For example,

x1 XOR x2 = (x1 AND ∼ x2) OR (∼ x1 AND x2)

We have seen previously how to implement AND and OR using percep-

trons. So two perceptrons can in parallel implement the two AND, and

another perceptron on top can OR them together (see figure 11.7). We see

that the first layer maps inputs from the (x1, x2) to the (z1, z2) space de-

fined by the first-layer perceptrons. Note that both inputs, (0,0) and (1,1),

are mapped to (0,0) in the (z1, z2) space, allowing linear separability in

this second space.

Thus in the binary case, for every input combination where the output

is 1, we define a hidden unit that checks for that particular conjunction of

the input. The output layer then implements the disjunction. Note that

this is just an existence proof, and such networks may not be practical

as up to 2d hidden units may be necessary when there are d inputs. Such

an architecture implements table lookup and does not generalize.

We can extend this to the case where inputs are continuous to show

that similarly, any arbitrary function with continuous input and outputs

can be approximated with a multilayer perceptron. The proof of universaluniversal

approximation approximation is easy with two hidden layers. For every input case or

region, that region can be delimited by hyperplanes on all sides using

hidden units on the first hidden layer. A hidden unit in the second layer

then ANDs them together to bound the region. We then set the weight

of the connection from that hidden unit to the output unit equal to the

desired function value. This gives a piecewise constant approximationpiecewise constant

approximation of the function; it corresponds to ignoring all the terms in the Taylor

expansion except the constant term. Its accuracy may be increased to

the desired value by increasing the number of hidden units and placing

a finer grid on the input. Note that no formal bounds are given on the

number of hidden units required. This property just reassures us that

there is a solution; it does not help us in any other way. It has been proven

that an MLP with one hidden layer (with an arbitrary number of hidden

units) can learn any nonlinear function of the input (Hornik, Stinchcombe,

and White 1989).

11.7 Backpropagation Algorithm 249

x0=+1 x1 x2

y

z
1

z
0
=+1

z
2

-0.5
-1 +1

-1+1

-0.5

+1 +1 -0.5

z1

z2

+

+

+

x1

x2

z1

z2y

Figure 11.7 The multilayer perceptron that solves the XOR problem. The hid-

den units and the output have the threshold activation function with threshold

at 0.

11.7 Backpropagation Algorithm

Training a multilayer perceptron is the same as training a perceptron;

the only difference is that now the output is a nonlinear function of the

input thanks to the nonlinear basis function in the hidden units. Con-

sidering the hidden units as inputs, the second layer is a perceptron and

we already know how to update the parameters, vij , in this case, given

the inputs zh. For the first-layer weights, whj , we use the chain rule to

calculate the gradient:

∂E

∂whj
= ∂E

∂yi

∂yi

∂zh

∂zh

∂whj

250 11 Multilayer Perceptrons

It is as if the error propagates from the output y back to the inputs

and hence the name backpropagation was coined (Rumelhart, Hinton, andbackpropagation

Williams 1986a).

11.7.1 Nonlinear Regression

Let us first take the case of nonlinear regression (with a single output)

calculated as

yt =
H∑
h=1

vhz
t
h + v0(11.13)

with zh computed by equation 11.11. The error function over the whole

sample in regression is

E(W,v|X) = 1

2

∑
t

(r t − yt)2(11.14)

The second layer is a perceptron with hidden units as the inputs, and

we use the least-squares rule to update the second-layer weights:

Δvh = η
∑
t

(r t − yt)zth(11.15)

The first layer are also perceptrons with the hidden units as the output

units but in updating the first-layer weights, we cannot use the least-

squares rule directly as we do not have a desired output specified for the

hidden units. This is where the chain rule comes into play. We write

Δwhj = −η ∂E

∂whj

= −η
∑
t

∂Et

∂yt
∂yt

∂zth

∂zth
∂whj

= −η
∑
t

−(r t − yt)︸ ︷︷ ︸
∂Et/∂yt

vh︸︷︷︸
∂yt /∂zth

zth(1− zth)xtj︸ ︷︷ ︸
∂zth/∂whj

= η
∑
t

(r t − yt)vhzth(1− zth)xtj(11.16)

The product of the first two terms (rt−yt)vh acts like the error term for

hidden unit h. This error is backpropagated from the error to the hidden

unit. (r t − yt) is the error in the output, weighted by the “responsibility”
of the hidden unit as given by its weight vh. In the third term, zh(1− zh)

11.7 Backpropagation Algorithm 251

is the derivative of the sigmoid and xtj is the derivative of the weighted

sum with respect to the weight whj . Note that the change in the first-

layer weight, Δwhj , makes use of the second-layer weight, vh. Therefore,

we should calculate the changes in both layers and update the first-layer

weights, making use of the old value of the second-layer weights, then

update the second-layer weights.

Weights, whj , vh are started from small random values initially, for ex-

ample, in the range [−0.01,0.01], so as not to saturate the sigmoids. It is

also a good idea to normalize the inputs so that they all have 0 mean and

unit variance and have the same scale, since we use a single η parameter.

With the learning equations given here, for each pattern, we compute

the direction in which each parameter needs be changed and the magni-

tude of this change. In batch learning, we accumulate these changes overbatch learning

all patterns and make the change once after a complete pass over the

whole training set is made, as shown in the previous update equations.

It is also possible to have online learning, by updating the weights af-

ter each pattern, thereby implementing stochastic gradient descent. A

complete pass over all the patterns in the training set is called an epoch.epoch

The learning factor, η, should be chosen smaller in this case and patterns

should be scanned in a random order. Online learning converges faster

because there may be similar patterns in the dataset, and the stochastic-

ity has an effect like adding noise and may help escape local minima.

An example of training a multilayer perceptron for regression is shown

in figure 11.8. As training continues, the MLP fit gets closer to the under-

lying function and error decreases (see figure 11.9). Figure 11.10 shows

how the MLP fit is formed as a sum of the outputs of the hidden units.

It is also possible to have multiple output units, in which case a number

of regression problems are learned at the same time. We have

yti =
H∑
h=1

vihz
t
h + vi0(11.17)

and the error is

E(W,V|X) = 1

2

∑
t

∑
i

(r ti − yti)2(11.18)

The batch update rules are then

Δvih = η
∑
t

(r ti − yti)zth(11.19)

252 11 Multilayer Perceptrons

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

100

200300

Figure 11.8 Sample training data shown as ‘+’, where xt ∼ U(−0.5,0.5), and
yt = f (xt)+N (0,0.1). f (x) = sin(6x) is shown by a dashed line. The evolution

of the fit of an MLP with two hidden units after 100, 200, and 300 epochs is

drawn.

Δwhj = η
∑
t

⎡
⎣∑

i

(r ti − yti)vih
⎤
⎦ zth(1− zth)xtj(11.20)

∑
i(r

t
i − yti)vih is the accumulated backpropagated error of hidden unit

h from all output units. Pseudocode is given in figure 11.11. Note that in

this case, all output units share the same hidden units and thus use the

same hidden representation, hence, we are assuming that correspond-

ing to these different outputs, we have related prediction problems. An

alternative is to train separate multilayer perceptrons for the separate

regression problems, each with its own separate hidden units.

11.7.2 Two-Class Discrimination

When there are two classes, one output unit suffices:

yt = sigmoid

⎛
⎝ H∑
h=1

vhz
t
h + v0

⎞
⎠(11.21)

11.7 Backpropagation Algorithm 253

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Training Epochs

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.9 The mean square error on training and validation sets as a function

of training epochs.

which approximates P(C1|xt) and P̂(C2|xt) ≡ 1− yt . We remember from
section 10.7 that the error function in this case is

E(W,v|X) = −
∑
t

r t logyt + (1− r t) log(1− yt)(11.22)

The update equations implementing gradient descent are

Δvh = η
∑
t

(r t − yt)zth(11.23)

Δwhj = η
∑
t

(r t − yt)vhzth(1− zth)xtj(11.24)

As in the simple perceptron, the update equations for regression and

classification are identical (which does not mean that the values are).

254 11 Multilayer Perceptrons

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

−0.5 0 0.5
−4

−3

−2

−1

0

1

2

3

4

Figure 11.10 (a) The hyperplanes of the hidden unit weights on the first layer,

(b) hidden unit outputs, and (c) hidden unit outputs multiplied by the weights on

the second layer. Two sigmoid hidden units slightly displaced, one multiplied

by a negative weight, when added, implement a bump. With more hidden units,

a better approximation is attained (see figure 11.12).

11.7.3 Multiclass Discrimination

In a (K > 2)-class classification problem, there are K outputs

oti =
H∑
h=1

vihz
t
h + vi0(11.25)

and we use softmax to indicate the dependency between classes; namely,

they are mutually exclusive and exhaustive:

yti =
expoti∑
k expo

t
k

(11.26)

11.7 Backpropagation Algorithm 255

Initialize all vih and whj to rand(−0.01,0.01)
Repeat

For all (xt , r t) ∈ X in random order
For h = 1, . . . ,H

zh ← sigmoid(wT
hx

t)

For i = 1, . . . , K

yi = vTi z
For i = 1, . . . , K

Δvi = η(rti − yti)z
For h = 1, . . . ,H

Δwh = η(
∑
i(r

t
i − yti)vih)zh(1− zh)xt

For i = 1, . . . , K

vi ← vi +Δvi
For h = 1, . . . ,H

wh ← wh +Δwh

Until convergence

Figure 11.11 Backpropagation algorithm for training a multilayer perceptron

for regression with K outputs. This code can easily be adapted for two-class

classification (by setting a single sigmoid output) and to K > 2 classification (by

using softmax outputs).

where yi approximates P(Ci|xt). The error function is

E(W,V|X) = −
∑
t

∑
i

r ti logy
t
i(11.27)

and we get the update equations using gradient descent:

Δvih = η
∑
t

(r ti − yti)zth(11.28)

Δwhj = η
∑
t

⎡
⎣∑

i

(r ti − yti)vih
⎤
⎦ zth(1− zth)xtj(11.29)

Richard and Lippmann (1991) have shown that given a network of

enough complexity and sufficient training data, a suitably trained mul-

tilayer perceptron estimates posterior probabilities.

256 11 Multilayer Perceptrons

11.7.4 Multiple Hidden Layers

As we saw before, it is possible to have multiple hidden layers each with

its own weights and applying the sigmoid function to its weighted sum.

For regression, let us say, if we have a multilayer perceptron with two

hidden layers, we write

z1h = sigmoid(wT
1hx) = sigmoid

⎛
⎝ d∑
j=1

w1hjxj +w1h0

⎞
⎠ , h = 1, . . . ,H1

z2l = sigmoid(wT
2lz1) = sigmoid

⎛
⎝ H1∑
h=0

w2lhz1h +w2l0

⎞
⎠ , l = 1, . . . ,H2

y = vTz2 =
H2∑
l=1

vlz2l + v0

where w1h and w2l are the first- and second-layer weights, z1h and z2h
are the units on the first and second hidden layers, and v are the third-

layer weights. Training such a network is similar except that to train the

first-layer weights, we need to backpropagate one more layer (exercise 5).

11.8 Training Procedures

11.8.1 Improving Convergence

Gradient descent has various advantages. It is simple. It is local; namely,

the change in a weight uses only the values of the presynaptic and postsy-

naptic units and the error (suitably backpropagated). When online train-

ing is used, it does not need to store the training set and can adapt as

the task to be learned changes. Because of these reasons, it can be (and

is) implemented in hardware. But by itself, gradient descent converges

slowly. When learning time is important, one can use more sophisticated

optimization methods (Battiti 1992). Bishop (1995) discusses in detail

the application of conjugate gradient and second-order methods to the

training of multilayer perceptrons. However, there are two frequently

used simple techniques that improve the performance of the gradient

descent considerably, making gradient-based methods feasible in real ap-

plications.

11.8 Training Procedures 257

Momentum

Let us say wi is any weight in a multilayer perceptron in any layer, includ-

ing the biases. At each parameter update, successive Δwt
i values may be

so different that large oscillations may occur and slow convergence. t is

the time index that is the epoch number in batch learning and the itera-

tion number in online learning. The idea is to take a running average by

incorporating the previous update in the current change as if there is a

momentum due to previous updates:momentum

Δwt
i = −η

∂Et

∂wi
+αΔwt−1

i(11.30)

α is generally taken between 0.5 and 1.0. This approach is especially

useful when online learning is used, where as a result we get an effect of

averaging and smooth the trajectory during convergence. The disadvan-

tage is that the past Δwt−1
i values should be stored in extra memory.

Adaptive Learning Rate

In gradient descent, the learning factor η determines the magnitude of

change to be made in the parameter. It is generally taken between 0.0

and 1.0, mostly less than or equal to 0.2. It can be made adaptive for

faster convergence, where it is kept large when learning takes place and

is decreased when learning slows down:

Δη =
{
+a if Et+τ < Et

−bη otherwise
(11.31)

Thus we increase η by a constant amount if the error on the training set

decreases and decrease it geometrically if it increases. Because E may

oscillate from one epoch to another, it is a better idea to take the average

of the past few epochs as Et .

11.8.2 Overtraining

A multilayer perceptron with d inputs, H hidden units, and K outputs

has H(d+1) weights in the first layer and K(H+1) weights in the second
layer. Both the space and time complexity of an MLP is O(H · (K + d)).
When e denotes the number of training epochs, training time complexity

is O(e ·H · (K + d)).

258 11 Multilayer Perceptrons

In an application, d and K are predefined and H is the parameter that

we play with to tune the complexity of the model. We know from pre-

vious chapters that an overcomplex model memorizes the noise in the

training set and does not generalize to the validation set. For example,

we have previously seen this phenomenon in the case of polynomial re-

gression where we noticed that in the presence of noise or small samples,

increasing the polynomial order leads to worse generalization. Similarly

in an MLP, when the number of hidden units is large, the generalization

accuracy deteriorates (see figure 11.12), and the bias/variance dilemma

also holds for the MLP, as it does for any statistical estimator (Geman,

Bienenstock, and Doursat 1992).

A similar behavior happens when training is continued too long: as

more training epochs are made, the error on the training set decreases,

but the error on the validation set starts to increase beyond a certain

point (see figure 11.13). Remember that initially all the weights are close

to 0 and thus have little effect. As training continues, the most impor-

tant weights start moving away from 0 and are utilized. But if training is

continued further on to get less and less error on the training set, almost

all weights are updated away from 0 and effectively become parameters.

Thus as training continues, it is as if new parameters are added to the sys-

tem, increasing the complexity and leading to poor generalization. Learn-

ing should be stopped early to alleviate this problem of overtraining. Theearly stopping

overtraining optimal point to stop training, and the optimal number of hidden units,

is determined through cross-validation, which involves testing the net-

work’s performance on validation data unseen during training.

Because of the nonlinearity, the error function has many minima and

gradient descent converges to the nearest minimum. To be able to assess

expected error, the same network is trained a number of times start-

ing from different initial weight values, and the average of the validation

error is computed.

11.8.3 Structuring the Network

In some applications, we may believe that the input has a local structure.

For example, in vision we know that nearby pixels are correlated and

there are local features like edges and corners; any object, for example,

a handwritten digit, may be defined as a combination of such primitives.

Similarly, in speech, locality is in time and inputs close in time can be

grouped as speech primitives. By combining these primitives, longer ut-

11.8 Training Procedures 259

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Hidden Units

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.12 As complexity increases, training error is fixed but the validation

error starts to increase and the network starts to overfit.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Training Epochs

M
ea

n
S

qu
ar

e
E

rr
or

Training
Validation

Figure 11.13 As training continues, the validation error starts to increase and

the network starts to overfit.

260 11 Multilayer Perceptrons

Figure 11.14 A structured MLP. Each unit is connected to a local group of units

below it and checks for a particular feature—for example, edge, corner, and so

forth—in vision. Only one hidden unit is shown for each region; typically there

are many to check for different local features.

terances, for example, speech phonemes, may be defined. In such a case

when designing the MLP, hidden units are not connected to all input units

because not all inputs are correlated. Instead, we define hidden units that

define a window over the input space and are connected to only a small

local subset of the inputs. This decreases the number of connections and

therefore the number of free parameters (Le Cun et al. 1989).

We can repeat this in successive layers where each layer is connected

to a small number of local units below and checks for a more compli-

cated feature by combining the features below in a larger part of the

input space until we get to the output layer (see figure 11.14). For ex-

ample, the input may be pixels. By looking at pixels, the first hidden

layer units may learn to check for edges of various orientations. Then

by combining edges, the second hidden layer units can learn to check for

combinations of edges—for example, arcs, corners, line ends—and then

combining them in upper layers, the units can look for semi-circles, rec-

tangles, or in the case of a face recognition application, eyes, mouth, and

so forth. This is the example of a hierarchical cone where features gethierarchical cone

more complex, abstract, and fewer in number as we go up the network

until we get to classes.

In such a case, we can further reduce the number of parameters by

weight sharing. Taking the example of visual recognition again, we canweight sharing

see that when we look for features like oriented edges, they may be

11.8 Training Procedures 261

Figure 11.15 In weight sharing, different units have connections to different

inputs but share the same weight value (denoted by line type). Only one set of

units is shown; there should be multiple sets of units, each checking for different

features.

present in different parts of the input space. So instead of defining in-

dependent hidden units learning different features in different parts of

the input space, we can have copies of the same hidden units looking at

different parts of the input space (see figure 11.15). During learning, we

calculate the gradients by taking different inputs, then we average these

up and make a single update. This implies a single parameter that de-

fines the weight on multiple connections. Also, because the update on a

weight is based on gradients for several inputs, it is as if the training set

is effectively multiplied.

11.8.4 Hints

The knowledge of local structure allows us to prestructure the multilayer

network, and with weight sharing it has fewer parameters. The alterna-

tive of an MLP with completely connected layers has no such structure

and is more difficult to train. Knowledge of any sort related to the ap-

plication should be built into the network structure whenever possible.

These are called hints (Abu-Mostafa 1995) and are the properties of thehints

target function that are known to us independent of the training exam-

ples.

In image recognition, there are invariance hints: the identity of an ob-

ject does not change when it is rotated, translated, or scaled (see fig-

ure 11.16). Hints are auxiliary information that can be used to guide the

learning process and are especially useful when the training set is limited.

There are different ways in which hints can be used:

262 11 Multilayer Perceptrons

A A AA

Figure 11.16 The identity of the object does not change when it is translated,

rotated, or scaled. Note that this may not always be true, or may be true up to a

point: ‘b’ and ‘q’ are rotated versions of each other. These are hints that can be

incorporated into the learning process to make learning easier.

1. Hints can be used to create virtual examples. For example, knowingvirtual examples

that the object is invariant to scale, from a given training example,

we can generate multiple copies at different scales and add them to

the training set with the same label. This has the advantage that we

increase the training set and do not need to modify the learner in any

way. The problem may be that too many examples may be needed for

the learner to learn the invariance.

2. The invariance may be implemented as a preprocessing stage. For

example, optical character readers have a preprocessing stage where

the input character image is centered and normalized for size and

slant. This is the easiest solution, when it is possible.

3. The hint may be incorporated into the network structure. Local struc-

ture and weight sharing, which we saw in section 11.8.3, is one exam-

ple where we get invariance to small translations and rotations.

4. The hint may also be incorporated by modifying the error function. Let

us say we know that x and x′ are the same from the application’s point

of view, where x′ may be a “virtual example” of x. That is, f (x) = f (x′),
when f (x) is the function we would like to approximate. Let us denote

by g(x|θ), our approximation function, for example, an MLP where θ

are its weights. Then, for all such pairs (x,x′), we define the penalty
function

Eh =
[
g(x|θ)− g(x′|θ)]2

and add it as an extra term to the usual error function:

E′ = E + λh · Eh

11.9 Tuning the Network Size 263

This is a penalty term penalizing the cases where our predictions do

not obey the hint, and λh is the weight of such a penalty (Abu-Mostafa

1995).

Another example is the approximation hint: Let us say that for x, we

do not know the exact value, f (x), but we know that it is in the interval,

[ax, bx]. Then our added penalty term is

Eh =

⎧⎪⎨
⎪⎩

0 if g(x|θ) ∈ [ax, bx]
(g(x)− ax)2 if g(x|θ) < ax
(g(x)− bx)2 if g(x|θ) > bx

This is similar to the error function used in support vector regression

(section 13.10), which tolerates small approximation errors.

Still another example is the tangent prop (Simard et al. 1992) wheretangent prop

the transformation against which we are defining the hint—for exam-

ple, rotation by an angle—is modeled by a function. The usual error

function is modified (by adding another term) so as to allow param-

eters to move along this line of transformation without changing the

error.

11.9 Tuning the Network Size

Previously we saw that when the network is too large and has too many

free parameters, generalization may not be well. To find the optimal

network size, the most common approach is to try many different ar-

chitectures, train them all on the training set, and choose the one that

generalizes best to the validation set. Another approach is to incorporate

this structural adaptation into the learning algorithm. There are two waysstructural

adaptation this can be done:

1. In the destructive approach, we start with a large network and gradu-

ally remove units and/or connections that are not necessary.

2. In the constructive approach, we start with a small network and grad-

ually add units and/or connections to improve performance.

One destructive method is weight decay where the idea is to remove un-weight decay

necessary connections. Ideally to be able to determine whether a unit or

connection is necessary, we need to train once with and once without and

264 11 Multilayer Perceptrons

check the difference in error on a separate validation set. This is costly

since it should be done for all combinations of such units/connections.

Given that a connection is not used if its weight is 0, we give each

connection a tendency to decay to 0 so that it disappears unless it is

reinforced explicitly to decrease error. For any weight wi in the network,

we use the update rule:

Δwi = −η ∂E
∂wi

− λwi(11.32)

This is equivalent to doing gradient descent on the error function with

an added penalty term, penalizing networks with many nonzero weights:

E′ = E + λ

2

∑
i

w2
i(11.33)

Simpler networks are better generalizers is a hint that we implement by

adding a penalty term. Note that we are not saying that simple networks

are always better than large networks; we are saying that if we have two

networks that have the same training error, the simpler one—namely, the

one with fewer weights—has a higher probability of better generalizing

to the validation set.

The effect of the second term in equation 11.32 is like that of a spring

that pulls each weight to 0. Starting from a value close to 0, unless the

actual error gradient is large and causes an update, due to the second

term, the weight will gradually decay to 0. λ is the parameter that deter-

mines the relative importances of the error on the training set and the

complexity due to nonzero parameters and thus determines the speed of

decay: With large λ, weights will be pulled to 0 no matter what the train-

ing error is; with small λ, there is not much penalty for nonzero weights.

λ is fine-tuned using cross-validation.

Instead of starting from a large network and pruning unnecessary con-

nections or units, one can start from a small network and add units and

associated connections should the need arise (figure 11.17). In dynamicdynamic node

creation node creation (Ash 1989), an MLP with one hidden layer with one hidden

unit is trained and after convergence, if the error is still high, another

hidden unit is added. The incoming weights of the newly added unit and

its outgoing weight are initialized randomly and trained with the previ-

ously existing weights that are not reinitialized and continue from their

previous values.

In cascade correlation (Fahlman and Lebiere 1990), each added unitcascade

correlation

11.9 Tuning the Network Size 265

Dynamic Node Creation Cascade Correlation

Figure 11.17 Two examples of constructive algorithms. Dynamic node creation

adds a unit to an existing layer. Cascade correlation adds each unit as a new

hidden layer connected to all the previous layers. Dashed lines denote the newly

added unit/connections. Bias units/weights are omitted for clarity.

is a new hidden unit in another hidden layer. Every hidden layer has

only one unit that is connected to all of the hidden units preceding it

and the inputs. The previously existing weights are frozen and are not

trained; only the incoming and outgoing weights of the newly added unit

are trained.

Dynamic node creation adds a new hidden unit to an existing hidden

layer and never adds another hidden layer. Cascade correlation always

adds a new hidden layer with a single unit. The ideal constructive method

should be able to decide when to introduce a new hidden layer and when

to add a unit to an existing layer. This is an open research problem.

Incremental algorithms are interesting because they correspond tomod-

ifying not only the parameters but also the model structure during learn-

ing. We can think of a space defined by the structure of the multilayer

perceptron and operators corresponding to adding/removing unit(s) or

layer(s) to move in this space (Aran et al. 2009). Incremental algorithms

then do a search in this state space where operators are tried (according

to some order) and accepted or rejected depending on some goodness

measure, for example, some combination of complexity and validation er-

ror. Another example would be a setting in polynomial regression where

266 11 Multilayer Perceptrons

high-order terms are added/removed during training automatically, fit-

ting model complexity to data complexity. As the cost of computation

gets lower, such automatic model selection should be a part of the learn-

ing process done automatically without any user interference.

11.10 Bayesian View of Learning

The Bayesian approach in training neural networks considers the param-

eters, namely, connection weights, wi , as random variables drawn from

a prior distribution p(wi) and computes the posterior probability given

the data

p(w|X) = p(X|w)p(w)
p(X)(11.34)

where w is the vector of all weights of the network. The MAP estimate ŵ

is the mode of the posterior

ŵMAP = argmax
w

logp(w|X)(11.35)

Taking the log of equation 11.34, we get

logp(w|X) = logp(X|w)+ logp(w)+ C

The first term on the right is the log likelihood, and the second is the

log of the prior. If the weights are independent and the prior is taken as

Gaussian,N (0,1/2λ)

p(w) =
∏
i

p(wi) where p(wi) = c · exp
[
− w2

i

2(1/2λ)

]
(11.36)

the MAP estimate minimizes the augmented error function

E′ = E + λ‖w‖2(11.37)

where E is the usual classification or regression error (negative log like-

lihood). This augmented error is exactly the error function we used in

weight decay (equation 11.33). Using a large λ assumes small variability

in parameters, puts a larger force on them to be close to 0, and takes

the prior more into account than the data; if λ is small, then the allowed

variability of the parameters is larger. This approach of removing unnec-

essary parameters is known as ridge regression in statistics.ridge regression

This is another example of regularization with a cost function, combin-regularization

11.11 Dimensionality Reduction 267

ing the fit to data and model complexity

cost = data-misfit+ λ · complexity(11.38)

The use of Bayesian estimation in training multilayer perceptrons is

treated in MacKay 1992a, b. We are going to talk about Bayesian estima-

tion in more detail in chapter 14.

Empirically, it has been seen that after training, most of the weights

of a multilayer perceptron are distributed normally around 0, justifying

the use of weight decay. But this may not always be the case. Nowlan

and Hinton (1992) proposed soft weight sharing where weights are drawnsoft weight sharing

from a mixture of Gaussians, allowing them to formmultiple clusters, not

one. Also, these clusters may be centered anywhere and not necessarily

at 0, and have variances that are modifiable. This changes the prior of

equation 11.36 to a mixture of M ≥ 2 Gaussians

p(wi) =
M∑
j=1

αjpj(wi)(11.39)

whereαj are the priors and pj(wi) ∼N (mj, s
2
j) are the component Gaus-

sians. M is set by the user and αj,mj, sj are learned from the data.

Using such a prior and augmenting the error function with its log dur-

ing training, the weights converge to decrease error and also are grouped

automatically to increase the log prior.

11.11 Dimensionality Reduction

In a multilayer perceptron, if the number of hidden units is less than the

number of inputs, the first layer performs a dimensionality reduction.

The form of this reduction and the new space spanned by the hidden

units depend on what the MLP is trained for. If the MLP is for classifica-

tion with output units following the hidden layer, then the new space is

defined and the mapping is learned to minimize classification error (see

figure 11.18).

We can get an idea of what the MLP is doing by analyzing the weights.

We know that the dot product is maximum when the two vectors are

identical. So we can think of each hidden unit as defining a template in

its incoming weights, and by analyzing these templates, we can extract

knowledge from a trained MLP. If the inputs are normalized, weights tell

us of their relative importance. Such analysis is not easy but gives us

268 11 Multilayer Perceptrons

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden 1

H
id

de
n

2

Hidden Representation

00

7

4

62

5

5

0

8

7

1
9

5

3

0

4

7

8

4
7

8

5

9

1

2

0

6

1

8

7

0

7

6

9 1

9

3

9 4

9

2

1

9
9

6

4

3

2

8

2

7
1 4

6

2
0

4

6

3

7

1

02

2

5

2

4

8

1

7

3

0

3
3

77

9

1

3

3

4

3

4

2

8

8

9

8

4

7

1

6

9

4

0

1

3

6

2

Figure 11.18 Optdigits data plotted in the space of the two hidden units of

an MLP trained for classification. Only the labels of one hundred data points are

shown. This MLP with sixty-four inputs, two hidden units, and ten outputs has 80

percent accuracy. Because of the sigmoid, hidden unit values are between 0 and

1 and classes are clustered around the corners. This plot can be compared with

the plots in chapter 6, which are drawn using other dimensionality reduction

methods on the same dataset.

some insight as to what the MLP is doing and allows us to peek into the

black box.

An interesting architecture is the autoassociator (Cottrell, Munro, andautoassociator

Zipser 1987), which is an MLP architecture where there are as many out-

puts as there are inputs, and the required outputs are defined to be equal

to the inputs (see figure 11.19). To be able to reproduce the inputs again

at the output layer, the MLP is forced to find the best representation of

the inputs in the hidden layer. When the number of hidden units is less

than the number of inputs, this implies dimensionality reduction. Once

11.11 Dimensionality Reduction 269

x
0
=+
1

x1 xd

zH

Encoder

y1 y
d

Decoder

y1 y
d

x
0
=+
1

x1 xd

zH

Linear Nonlinear

Figure 11.19 In the autoassociator, there are as many outputs as there are

inputs and the desired outputs are the inputs. When the number of hidden units

is less than the number of inputs, the MLP is trained to find the best coding of

the inputs on the hidden units, performing dimensionality reduction. On the

left, the first layer acts as an encoder and the second layer acts as the decoder.

On the right, if the encoder and decoder are multilayer perceptrons with sigmoid

hidden units, the network performs nonlinear dimensionality reduction.

the training is done, the first layer from the input to the hidden layer

acts as an encoder, and the values of the hidden units make up the en-

coded representation. The second layer from the hidden units to the

output units acts as a decoder, reconstructing the original signal from its

encoded representation.

It has been shown (Bourlard and Kamp 1988) that an MLP with one

hidden layer of units implements principal components analysis (sec-

tion 6.3), except that the hidden unit weights are not the eigenvectors

sorted in importance using the eigenvalues but span the same space as

theH principal eigenvectors. If the encoder and decoder are not one layer

but multilayer perceptrons with sigmoid nonlinearity in the hidden units,

the encoder implements nonlinear dimensionality reduction (Hinton and

Salakhutdinov 2006).

Another way to use an MLP for dimensionality reduction is through

multidimensional scaling (section 6.5). Mao and Jain (1995) show how an

MLP can be used to learn the Sammon mapping. Recalling equation 6.29,Sammon mapping

270 11 Multilayer Perceptrons

Sammon stress is defined as

E(θ|X) =
∑
r ,s

[‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖
‖xr − xs‖

]2
(11.40)

An MLP with d inputs,H hidden units, and k < d output units is used to

implement g(x|θ), mapping the d-dimensional input to a k-dimensional

vector, where θ corresponds to the weights of the MLP. Given a dataset of

X = {xt}t , we can use gradient descent to minimize the Sammon stress

directly to learn the MLP, namely, g(x|θ), such that the distances be-

tween the k-dimensional representations are as close as possible to the

distances in the original space.

11.12 Learning Time

Until now, we have been concerned with cases where the input is fed

once, all together. In some applications, the input is temporal where we

need to learn a temporal sequence. In others, the output may also change

in time. Examples are as follows:

� Sequence recognition. This is the assignment of a given sequence to

one of several classes. Speech recognition is one example where the

input signal sequence is the spoken speech and the output is the code

of the word spoken. That is, the input changes in time but the output

does not.

� Sequence reproduction. Here, after seeing part of a given sequence, the

system should predict the rest. Time-series prediction is one example

where the input is given but the output changes.

� Temporal association. This is the most general case where a particular

output sequence is given as output after a specific input sequence. The

input and output sequences may be different. Here both the input and

the output change in time.

11.12.1 Time Delay Neural Networks

The easiest way to recognize a temporal sequence is by converting it to a

spatial sequence. Then any method discussed up to this point can be uti-

lized for classification. In a time delay neural network (Waibel et al. 1989),time delay neural

network

11.12 Learning Time 271

Figure 11.20 A time delay neural network. Inputs in a time window of length T

are delayed in time until we can feed all T inputs as the input vector to the MLP.

previous inputs are delayed in time so as to synchronize with the final in-

put, and all are fed together as input to the system (see figure 11.20).

Backpropagation can then be used to train the weights. To extract fea-

tures local in time, one can have layers of structured connections and

weight sharing to get translation invariance in time. The main restriction

of this architecture is that the size of the time window we slide over the

sequence should be fixed a priori.

11.12.2 Recurrent Networks

In a recurrent network, additional to the feedforward connections, unitsrecurrent network

have self-connections or connections to units in the previous layers. This

recurrency acts as a short-term memory and lets the network remember

what happened in the past.

Most frequently, one uses a partially recurrent network where a lim-

ited number of recurrent connections are added to a multilayer percep-

tron (see figure 11.21). This combines the advantage of the nonlinear

approximation ability of a multilayer perceptron with the temporal rep-

resentation ability of the recurrency, and such a network can be used to

implement any of the three temporal association tasks. It is also possible

to have hidden units in the recurrent backward connections, these being

272 11 Multilayer Perceptrons

(a) (c)(b)

Figure 11.21 Examples of MLP with partial recurrency. Recurrent connections

are shown with dashed lines: (a) self-connections in the hidden layer, (b) self-

connections in the output layer, and (c) connections from the output to the

hidden layer. Combinations of these are also possible.

known as context units. No formal results are known to determine how

to choose the best architecture given a particular application.

If the sequences have a small maximum length, then unfolding in timeunfolding in time

can be used to convert an arbitrary recurrent network to an equivalent

feedforward network (see figure 11.22). A separate unit and connection

is created for copies at different times. The resulting network can be

trained with backpropagation with the additional requirement that all

copies of each connection should remain identical. The solution, as in

weight sharing, is to sum up the different weight changes in time and

change the weight by the average. This is called backpropagation throughbackpropagation

through time time (Rumelhart, Hinton, and Willams 1986b). The problem with this ap-

proach is the memory requirement if the length of the sequence is large.

Real time recurrent learning (Williams and Zipser 1989) is an algorithmreal time recurrent

learning for training recurrent networks without unfolding and has the advantage

that it can use sequences of arbitrary length.

11.13 Notes

Research on artificial neural networks is as old as the digital computer.

McCulloch and Pitts (1943) proposed the first mathematical model for the

artificial neuron. Rosenblatt (1962) proposed the perceptron model and a

learning algorithm in 1962. Minsky and Papert (1969) showed the limita-

11.13 Notes 273

(a) (b)

x

x3

x0

x1

x2

W

y

h

V
R

W

W

W

W R

R

R

V

h0

h3

h1

h2

y

Figure 11.22 Backpropagation through time: (a) recurrent network, and (b) its

equivalent unfolded network that behaves identically in four steps.

tion of single-layer perceptrons, for example, the XOR problem, and since

there was no algorithm to train a multilayer perceptron with a hidden

layer at that time, the work on artificial neural networks almost stopped

except at a few places. The renaissance of neural networks came with

the paper by Hopfield (1982). This was followed by the two-volume Paral-

lel Distributed Processing (PDP) book written by the PDP Research Group

(Rumelhart, McClelland, and the PDP Research Group 1986). It seems as

though backpropagation was invented independently in several places al-

most at the same time and the limitation of a single-layer perceptron no

longer held.

Starting in the mid-1980s, there has been a huge explosion of work on

artificial neural network models from various disciplines: physics, statis-

tics, psychology, cognitive science, neuroscience, and lingustics, not to

mention computer science, electrical engineering, and adaptive control.

274 11 Multilayer Perceptrons

Perhaps the most important contribution of research on artificial neu-

ral networks is this synergy that bridged various disciplines, especially

statistics and engineering. It is thanks to this that the field of machine

learning is now well established.

The field is much more mature now; aims are more modest and better

defined. One of the criticisms of backpropagation was that it was not

biologically plausible! Though the term “neural network” is still widely

used, it is generally understood that neural network models, for example,

multilayer perceptrons, are nonparametric estimators and that the best

way to analyze them is by using statistical methods.

For example, a statistical method similar to the multilayer perceptron

is projection pursuit (Friedman and Stuetzle 1981), which is written asprojection pursuit

y =
H∑
h=1

φh(w
T
hx)

the difference being that each “hidden unit” has its own separate func-

tion, φh(·), though in an MLP, all are fixed to be sigmoid. In chapter 12,

we will see another neural network structure, named radial basis func-

tions, which uses the Gaussian function at the hidden units.

There are various textbooks on artificial neural networks: Hertz, Krogh,

and Palmer 1991, the earliest, is still readable. Bishop 1995 has a pattern

recognition emphasis and discusses in detail various optimization algo-

rithms that can be used for training, as well as the Bayesian approach,

generalizing weight decay. Ripley 1996 analyzes neural networks from a

statistical perspective.

Artificial neural networks, for example, multilayer perceptrons, have

various successful applications. In addition to their various successful

applications in adaptive control, speech recognition, and vision, two are

noteworthy: Tesauro’s TD-Gammon program (Tesauro 1994) uses rein-

forcement learning (chapter 18) to train a multilayer perceptron and plays

backgammon at a master level. Pomerleau’s ALVINN is a neural network

that autonomously drives a van up to 20 miles per hour after learning by

observing a driver for five minutes (Pomerleau 1991).

11.14 Exercises

1. Show the perceptron that calculates NOT of its input.

2. Show the perceptron that calculates NAND of its two inputs.

11.15 References 275

3. Show the perceptron that calculates the parity of its three inputs.

4. Derive the update equations when the hidden units use tanh, instead of the

sigmoid. Use the fact that tanh′ = (1− tanh2).

5. Derive the update equations for an MLP with two hidden layers.

6. Consider a MLP architecture with one hidden layer where there are also direct

weights from the inputs directly to the output units. Explain when such a

structure would be helpful and how it can be trained.

7. Parity is cyclic shift invariant; for example, “0101” and “1010” have the same

parity. Propose a multilayer perceptron to learn the parity function using this

hint.

8. In cascade correlation, what are the advantages of freezing the previously

existing weights?

9. Derive the update equations for an MLP implementing Sammon mapping that

minimizes Sammon stress (equation 11.40).

10. In section 11.6, we discuss how a MLP with two hidden layers can implement

piecewise constant approximation. Show that if the weight in the last layer is

not a constant but a linear function of the input, we can implement piecewise

linear approximation.

11. Derive the update equations for soft weight sharing.

12. In the autoassociator network, how can we decide on the number of hidden

units?

13. Incremental learning of the structure of a MLP can be viewed as a state space

search. What are the operators? What is the goodness function? What type of

search strategies are appropriate? Define these in such a way that dynamic

node creation and cascade-correlation are special instantiations.

14. For the MLP given in figure 11.22, derive the update equations for the un-

folded network.

11.15 References

Abu-Mostafa, Y. 1995. “Hints.” Neural Computation 7: 639–671.

Aran, O., O. T. Yıldız, and E. Alpaydın. 2009. “An Incremental Framework Based

on Cross-Validation for Estimating the Architecture of a Multilayer Percep-

tron.” International Journal of Pattern Recognition and Artificial Intelligence

23: 159–190.

Ash, T. 1989. “Dynamic Node Creation in Backpropagation Networks.” Connec-

tion Science 1: 365–375.

276 11 Multilayer Perceptrons

Battiti, R. 1992. “First- and Second-Order Methods for Learning: Between Steep-

est Descent and Newton’s Method.” Neural Computation 4: 141–166.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

Bourlard, H., and Y. Kamp. 1988. “Auto-Association by Multilayer Perceptrons

and Singular Value Decomposition.” Biological Cybernetics 59: 291–294.

Cottrell, G. W., P. Munro, and D. Zipser. 1987. “Learning Internal Representa-

tions from Gray-Scale Images: An Example of Extensional Programming.” In

Ninth Annual Conference of the Cognitive Science Society, 462–473. Hillsdale,

NJ: Erlbaum.

Durbin, R., and D. E. Rumelhart. 1989. “Product Units: A Computationally

Powerful and Biologically Plausible Extension to Backpropagation Networks.”

Neural Computation 1: 133–142.

Fahlman, S. E., and C. Lebiere. 1990. “The Cascade Correlation Architecture.”

In Advances in Neural Information Processing Systems 2, ed. D. S. Touretzky,

524–532. San Francisco: Morgan Kaufmann.

Friedman, J. H., and W. Stuetzle. 1981. “Projection Pursuit Regression.” Journal

of the American Statistical Association 76: 817–823.

Geman, S., E. Bienenstock, and R. Doursat. 1992. “Neural Networks and the

Bias/Variance Dilemma.” Neural Computation 4: 1–58.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural

Computation. Reading, MA: Addison Wesley.

Hinton, G. E., and R. R. Salakhutdinov. 2006. “Reducing the dimensionality of

data with neural networks.” Science 313: 504–507.

Hopfield, J. J. 1982. “Neural Networks and Physical Systems with Emergent

Collective Computational Abilities.” Proceedings of the National Academy of

Sciences USA 79: 2554–2558.

Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer Feedforward Net-

works Are Universal Approximators.” Neural Networks 2: 359–366.

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zipcode

Recognition.” Neural Computation 1: 541–551.

MacKay, D. J. C. 1992a. “Bayesian Interpolation.” Neural Computation 4: 415–

447.

MacKay, D. J. C. 1992b. “A Practical Bayesian Framework for Backpropagation

Networks” Neural Computation 4: 448–472.

Mao, J., and A. K. Jain. 1995. “Artificial Neural Networks for Feature Extraction

and Multivariate Data Projection.” IEEE Transactions on Neural Networks 6:

296–317.

11.15 References 277

Marr, D. 1982. Vision. New York: Freeman.

McCulloch, W. S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immenent

in Nervous Activity.” Bulletin of Mathematical Biophysics 5: 115–133.

Minsky, M. L., and S. A. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.

(Expanded ed. 1990.)

Nowlan, S. J., and G. E. Hinton. 1992. “Simplifying Neural Networks by Soft

Weight Sharing.” Neural Computation 4: 473–493.

Pomerleau, D. A. 1991. “Efficient Training of Artificial Neural Networks for

Autonomous Navigation.” Neural Computation 3: 88–97.

Posner, M. I., ed. 1989. Foundations of Cognitive Science. Cambridge, MA: MIT

Press.

Richard, M. D., and R. P. Lippmann. 1991. “Neural Network Classifiers Estimate

Bayesian a Posteriori Probabilities.” Neural Computation 3: 461–483.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge, UK:

Cambridge University Press.

Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms. New York: Spartan.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986a. “Learning Representa-

tions by Backpropagating Errors.” Nature 323: 533–536.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986b. “Learning Internal

Representations by Error Propagation.” In Parallel Distributed Processing, ed.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, 318–362. Cam-

bridge, MA: MIT Press.

Rumelhart, D. E., J. L. McClelland, and the PDP Research Group, eds. 1986.

Parallel Distributed Processing. Cambridge, MA: MIT Press.

Simard, P., B. Victorri, Y, Le Cun, and J. Denker. 1992. “Tangent Prop: A Formal-

ism for Specifying Selected Invariances in an Adaptive Network.” In Advances

in Neural Information Processing Systems 4, ed. J. E. Moody, S. J. Hanson, and

R. P. Lippman, 895–903. San Francisco: Morgan Kaufmann.

Tesauro, G. 1994. “TD-Gammon, A Self-Teaching Backgammon Program, Achieves

Master-Level Play.” Neural Computation 6: 215–219.

Thagard, P. 2005. Mind: Introduction to Cognitive Science. 2nd ed. Cambridge,

MA: MIT Press.

Waibel, A., T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. 1989. “Phoneme

Recognition Using Time-Delay Neural Networks.” IEEE Transactions on Acous-

tics, Speech, and Signal Processing 37: 328–339.

Williams, R. J., and D. Zipser. 1989. “A Learning Algorithm for Continually

Running Fully Recurrent Neural Networks.” Neural Computation 1: 270–280.

