
CSci 5271
Introduction to Computer Security

Day 26: Electronic cash and Bitcoin
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Previous e-cash and techniques

Bitcoin design

Announcements

Bitcoin experience

Kinds of Internet payments

Credit/debit cards: most popular
Wide adoption among consumers, little
consumer fraud liability
Restrictive merchant procedures

PayPal
Easier to accept payments
Centrally managed to deal with fraud

One ideal: electronic cash

Direct transactions without third party

No transaction fees

Potentially anonymous

Non-revocable: buyer bears fraud risk

Micropayments

Claim: what the web needs is small
payments to support content

Too small for existing mechanisms

One idea (Peppercoin): simulate small
payment with small probability of larger
payment
Actual market for micropayments has
been small

Most buyers and sellers prefer free +
other revenue

Blinded signatures

Sign something without knowing its
value

Often used together with randomized
auditing
For RSA, multiply message by r

e, r
random

Allows a bank to “mint” coins that can
still be anonymous

Challenge: double spending

Any purely electronic data can be
duplicated, including electronic money

Can’t allow two copies to both be spent

Shows ideal no-third-party e-cash can’t
be possible

Puzzles / proof-of-work

Computational problem you solve to
show you spent some effort

Common: choose s so that h(m k s)

starts with many 0 bits

For instance, required solved puzzles
can be a countermeasure against DoS

Hashcash and spam

Idea: use proof of work to solve email
spam problem

Puzzle based on date and recipient

Legitimate users send only a few
messages

Problem 1: mailing lists
Problem 2: spam botnets

Never caught on

Hash trees and timestamp services

Merkle tree: parent node includes hash
of children

Good hash function ! root determines
whole tree

Can prove value of leaf with log-sized
evidence

Application: document timestamping
(commitment) service

Outline

Previous e-cash and techniques

Bitcoin design

Announcements

Bitcoin experience

Bitcoin addresses

Address is basically a public/private
signing key pair

Randomized naming, collision unlikely

At any moment, balance is a perhaps
fractional number of bitcoins (BTC)

Anyone one can send to an address,
private key needed to spend

Global transaction log

Basic transaction: Take x1 from a1, x2
from a2, . . . , put y1 in a 0

1
, y2 in a 0

2
, . . .

Of course require
P

i xi =
P

j yj

Keep one big list of all transactions
ever

Check all balances in addresses taken
from are sufficient

Bitcoin network

Use peer-to-peer network to distribute
transaction log

Roughly similar to BitTorrent, etc. for
old data

Once a node is in sync, only updates
need to be sent

New transactions sent broadcast

Consistency and double-spending

If all nodes always saw the same log,
double-spending would be impossible

But how to ensure consistency, if
multiple clients update at once?

Symmetric situation: me and “me” in
Australia both try to spend the same
$100 at the same time

Bitcoin blocks

Group �10 minutes of latest
transactions into one “block”

Use a proof of work so creating a block
is very hard

All nodes race, winning block
propagates

Bitcoin blockchains

Each block contains a pointer to the
previous one

Nodes prefer the longest chain they
know

E.g., inconsistency usually resolved by
next block

Regulating difficulty

Difficulty of the proof-of-work is
adjusted to target the 10 minute block
frequency

Recomputed over two-week (2016
block) average

Network adjusts to amount of
computing power available

Bitcoin mining

Where do bitcoins come from
originally?

Fixed number created per block,
assigned by the node that made it

An incentive to compete in the block
generation race

Called mining by analogy with gold

Outline

Previous e-cash and techniques

Bitcoin design

Announcements

Bitcoin experience

Group project presentations

Start next Wednesday, run three
lectures

Plan 10 minute presentation plus say 3
minutes Q&A

One student per group presents

Slides, BYO laptop recommended
Can send me backup slides (PDF, PPT)
night before

Wednesday presentations

1:00 - 1:13 JS API checking (Q)

1:14 - 1:25 Password models (LMS)

1:26 - 1:39 Reading CAPTCHAs (NORR)

1:40 - 1:45 announcements

1:46 - 1:59 Evil-twin WiFi (CNQT)

2:00 - 2:13 Password managers (DEK)

December dates

Final project progress reports due
tonight

Exercise set 5 due Tuesday 12/12

Project final reports due Wednesday
12/13

Outline

Previous e-cash and techniques

Bitcoin design

Announcements

Bitcoin experience

Where Bitcoin came from

Paper and early implementation by
Satoshi Nakamoto

Generally presumed to be a pseudonym

“Genesis block” created January 2009
Containing headline from The Times (of
London) about a bank bailout

Current statistics

Block chain 497,498 blocks, �154GB

16.7M BTC minted (many presumed lost)

Theoretical value at market exchange
rate > $184 billion

Millions of addresses, probably many
fewer users

Mining power: 11 etahash/sec

What can you buy with Bitcoin?

Stuff from increasingly many online
retailers

In-person purchases, still mostly a
novelty

Ransomware ransoms

Illegal drugs (Silk Road successors)

Murder for hire: currently probably a
fraud

Bitcoin as a currency

Can be exchanged for dollars, etc.
Currently pretty cumbersome

In some ways more like gold than fiat
currencies

No central authority
Price changes driven more by demand
than supply

Exchange rate trend: volatile, recently
up a lot

Deflation and speculation

Some people want bitcoins to spend on
purchases

Demand based on “velocity”
Supply does not keep up with interest
So, value of 1 BTC has to go up

Others want bitcoins because they
think the price will go up in the future

Self-fulfilling prophecy
But vulnerable to steep drops if
expectations change

Bitcoin mining trends

Exponentially increasing rates

CPU ! GPU ! FPGA ! ASIC

Specialized hardware has eclipsed
general purpose

Including malware and botnets

Recent price trends suggest continuing
investment

Enforcing consistency

Structure of network very resistant to
protocol change

Inertia of everybody else’s code

Changes unpopular among miners will
not stick

Minor crisis March 2013: details of
database lock allocation cause half of
network to reject large block

Scaling Bitcoin

Current most pressing limitation: 1MB
block size

Limits volume of transactions
Several changes that would effectively
increase it still being discussed

Size of block chain
Compare growth to external storage
cost/GB
Fewer and fewer users keep the whole
chain anyway

Speed of confirmation

When is it safe to know you have
received money?
Safe answer: wait for several blocks

Too slow for, say, in-person transactions

Much faster: wait for transaction to
propagate

Basic rule: precedence by order seen

Stealing bitcoins

Bitcoins are a very tempting target for
malware

Private keys stored directly on client
machines
Theft is non-reversible
Much easier than PayPal or identity theft

Standard recommendation is to keep
keys mostly offline

Bitcoin (non-)anonymity

Bitcoin addresses are not directly tied
to any other identity
But the block chain is public, so there’s
lots of information

E.g., list of largest balances easily
collectable

Zero-knowledge for privacy

Basic idea: prove this money came
from a previous transaction

But without revealing which

Made possible with recent crypto
constructions

Downsides: still expensive, trusted setup

Two rounds of academic papers lead to
“Zcash”

Different proofs of work

Desire: avoid centralizing mining in
large farms
Common approach is to make memory
rather than computation the limiting
factor in cost

Similar constructions also used for
password hashing

Some tricky trade-offs, including desire
for cheap verification

Smart contracts

Basically, computer programs that
disburse money

Idea predates Bitcoin, but it’s a natural
match

Bitcoin has a limited programming
language

Other contenders, such as Ethereum,
have a richer one

Smart contracts challenges

Expensive to run contracts many times
(e.g., during mining)
Code visible, but bugs can’t be fixed

Hack of high-profile Ethereum “DAO”
application lead to a community fork

Next time

Group project presentations

