CSci 5271
Introduction to Computer Security
Day 26: Electronic cash and Bitcoin

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Previous e-cash and techniques

Kinds of Internet payments

) Credit/debit cards: most popular
® Wide adoption among consumers, little
consumer fraud liability
® Restrictive merchant procedures
) PayPal
m Easier to accept payments
® Centrally managed to deal with fraud

One ideal: electronic cash

) Direct transactions without third party
©) No transaction fees

) Potentially anonymous

£) Non-revocable: buyer bears fraud risk

Micropayments

©) Claim: what the web needs is small
payments to support content
® Too small for existing mechanisms
©) One idea (Peppercoin): simulate small
payment with small probability of larger
payment
) Actual market for micropayments has

been small
® Most buyers and sellers prefer free +
other revenue

Blinded signatures

£) Sign something without knowing its
value
® Often used together with randomized
auditing
® For RSA, multiply message by r¢, r
random
©) Allows a bank to "mint” coins that can

still be anonymous

Challenge: double spending

©) Any purely electronic data can be
duplicated, including electronic money

) Can't allow two copies to both be spent

) Shows ideal no-third-party e-cash can't
be possible

Puzzles / proof-of-work

) Computational problem you solve to
show you spent some effort

) Common: choose s so that h(m || s)
starts with many O bits

©) For instance, required solved puzzles
can be a countermeasure against DoS

Hashcash and spam

) Idea: use proof of work to solve email
spam problem

) Puzzle based on date and recipient

©) Legitimate users send only a few
messages
® Problem 1. mailing lists
® Problem 2: spam botnets

) Never caught on

Hash trees and timestamp services

) Merkle tree: parent node includes hash
of children

) Good hash function — root determines
whole tree

) Can prove value of leaf with log-sized
evidence

) Application: document timestamping
(commitment) service

Outline

Bitcoin design

Bitcoin addresses

©) Address is basically a public/private
signing key pair
® Randomized naming, collision unlikely
£) At any moment, balance is a perhaps
fractional number of bitcoins (BTC)

£) Anyone one can send to an address,
private key needed to spend

Global transaction log

) Basic transaction: Take x; from a;, x;
from a,, ..., put y; in aj, y2in aj, ...
® Of course require } ;x; =} ; y;
) Keep one big list of all transactions
ever
) Check all balances in addresses taken
from are sufficient

Bitcoin network

) Use peer-to-peer network to distribute
transaction log

©) Roughly similar to BitTorrent, etc. for
old data

£) Once a node is in sync, only updates
need to be sent

) New transactions sent broadcast

Consistency and double-spending

0 If all nodes always saw the same log,
double-spending would be impossible

©) But how to ensure consistency, if
multiple clients update at once?

©) Symmetric situation: me and "me” in
Australia both try to spend the same
$100 at the same time

Bitcoin blocks

£) Group ~10 minutes of latest
transactions into one “block”

) Use a proof of work so creating a block
is very hard

©) All nodes race, winning block
propagates

Bitcoin blockchains

) Each block contains a pointer to the
previous one

) Nodes prefer the longest chain they
know

©) E.g, inconsistency usually resolved by
next block

Requlating difficulty

) Difficulty of the proof-of-work is
adjusted to target the 10 minute block
frequency

£) Recomputed over two-week (2016
block) average

©) Network adjusts to amount of
computing power available

Bitcoin mining

) Where do bitcoins come from
originally?

) Fixed number created per block,
assigned by the node that made it

©) An incentive to compete in the block
generation race

) Called mining by analogy with gold

Outline

Announcements

Group project presentations

) Start next Wednesday, run three
lectures

) Plan 10 minute presentation plus say 3
minutes Q&A

©) One student per group presents

) Slides, BYO laptop recommended

® Can send me backup slides (PDF, PPT)
night before

N R B R

:00
:14
:26
:40
146
:00

|
N B B e R e

Wednesday presentations

:13
125
:39
:45
:59
:13

JS API checking (Q)
Password models (LMS)
Reading CAPTCHAs (NORR)
announcements
Evil-twin WiFi (CNQT)
Password managers (DEK)

December dates

) Final project progress reports due
tonight

) Exercise set 5 due Tuesday 12/12

) Project final reports due Wednesday
12/13

Outline

Bitcoin experience

Where Bitcoin came from

) Paper and early implementation by
Satoshi Nakamoto
® Generally presumed to be a pseudonym
) "Genesis block” created January 2009

® Containing headline from The Times (of
London) about a bank bailout

Current statistics

©) Block chain 497,498 blocks, ~154GB
£) 167M BTC minted (many presumed lost)

) Theoretical value at market exchange
rate > $184 billion

©) Millions of addresses, probably many
fewer users

£) Mining power: 11 etahash/sec

What can you buy with Bitcoin?

) Stuff from increasingly many online
retailers

) In-person purchases, still mostly a
novelty

£) Ransomware ransoms
) llegal drugs (Silk Road successors)

©) Murder for hire: currently probably a
fraud

Bitcoin as a currency

) Can be exchanged for dollars, etc.
® Currently pretty cumbersome
£) In some ways more like gold than fiat
currencies

® No central authority
® Price changes driven more by demand
than supply

£) Exchange rate trend: volatile, recently
up a lot

Deflation and speculation

) Some people want bitcoins to spend on
purchases

® Demand based on “velocity”
® Supply does not keep up with interest
® So, value of 1 BTC has to go up

) Others want bitcoins because they
think the price will go up in the future
® Self-fulfilling prophecy

® But vulnerable to steep drops if
expectations change

Bitcoin mining trends

£) Exponentially increasing rates
) CPU — GPU — FPGA — ASIC
) Specialized hardware has eclipsed
general purpose
® Including malware and botnets
£) Recent price trends suggest continuing
investment

Enforcing consistency

©) Structure of network very resistant to

protocol change
® Inertia of everybody else’s code

) Changes unpopular among miners will
not stick

) Minor crisis March 2013: details of
database lock allocation cause half of
network to reject large block

Scaling Bitcoin

) Current most pressing limitation: IMB
block size
® Limits volume of transactions
® Several changes that would effectively
increase it still being discussed
) Size of block chain
®m Compare growth to external storage
cost/GB
® Fewer and fewer users keep the whole
chain anyway

Speed of confirmation

©) When is it safe to know you have
received money?
) Safe answer: wait for several blocks
® Too slow for, say, in-person transactions
) Much faster: wait for transaction to
propagate
® Basic rule: precedence by order seen

Stealing bitcoins

) Bitcoins are a very tempting target for
malware
® Private keys stored directly on client
machines
® Theft is non-reversible
® Much easier than PayPal or identity theft
) Standard recommendation is to keep

keys mostly offline

Bitcoin (non-)anonymity

) Bitcoin addresses are not directly tied
to any other identity
) But the block chain is public, so there's

lots of information

® E g, list of largest balances easily
collectable

Zero-knowledge for privacy

) Basic idea: prove this money came
from a previous transaction
® But without revealing which
£) Made possible with recent crypto
constructions
® Downsides: still expensive, trusted setup

) Two rounds of academic papers lead to
“Zcash”

Different proofs of work

) Desire: avoid centralizing mining in
large farms
©) Common approach is to make memory

rather than computation the limiting
factor in cost

® Similar constructions also used for
password hashing

©) Some tricky trade-offs, including desire
for cheap verification

Smart contracts

) Basically, computer programs that
disburse money

® |dea predates Bitcoin, but it's a natural
match

) Bitcoin has a limited programming
language
m Other contenders, such as Ethereum,
have a richer one

Smart contracts challenges

) Expensive to run contracts many times
(e.g., during mining)
) Code visible, but bugs can't be fixed

® Hack of high-profile Ethereum “DAO”
application lead to a community fork

Next time

£) Group project presentations

