CSci 5271 Introduction to Computer Security Day 21: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Crypto failures, cont'd

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Side-channel attacks

- Timing analysis:
 - Number of 1 bits in modular exponentiation
 - Unpadding, MAC checking, error handling
 - Probe cache state of AES table entries
- Power analysis
 - Especially useful against smartcards
- Fault injection
- Data non-erasure
 - Hard disks, "cold boot" on RAM

WEP "privacy"

- First WiFi encryption standard: Wired Equivalent Privacy (WEP)
- F&S: designed by a committee that contained no cryptographers
- Problem 1: note "privacy": what about integrity?
 - Nope: stream cipher + CRC = easy bit flipping

WEP shared key

- Single key known by all parties on network
- Easy to compromise
- Hard to change
- Also often disabled by default
- Example: a previous employer

WEP key size and IV size

- Original sizes: 40-bit shared key (export restrictions) plus 24-bit IV = 64-bit RC4 key
 - Both too small
- 128-bit upgrade kept 24-bit IV
 - Vague about how to choose IVs
 - Least bad: sequential, collision takes hours
 - Worse: random or everyone starts at zero

WEP RC4 related key attacks

- Only true crypto weakness
- RC4 "key schedule" vulnerable when:
 - RC4 keys very similar (e.g., same key, similar IV)
 - First stream bytes used
- Not a practical problem for other RC4 users like SSL
 - Key from a hash, skip first output bytes

New problem with WPA (CCS'17)

- Session key set up in a 4-message handshake
- Key reinstallation attack: replay #3
 - Causes most implementations to reset nonce and replay counter
 - In turn allowing many other attacks
 - One especially bad case: reset key to 0
- Protocol state machine behavior poorly described in spec
 - Outside the scope of previous security proofs

Trustworthiness of primitives

- Classic worry: DES S-boxes
- Obviously in trouble if cipher chosen by your adversary
- In a public spec, most worrying are unexplained elements
- **Best** practice: choose constants from well-known math, like digits of π

Dual_EC_DRBG (1)

- Pseudorandom generator in NIST standard, based on elliptic curve
- Looks like provable (slow enough!) but strangely no proof
- Specification includes long unexplained constants
- Academic researchers find:
 - Some EC parts look good
 - But outputs are statistically distinguishable

Dual_EC_DRBG (2)

- Found 2007: special choice of constants allows prediction attacks
 - Big red flag for paranoid academics
- Significant adoption in products sold to US govt. FIPS-140 standards
 - Semi-plausible rationale from RSA (EMC)
- NSA scenario basically confirmed by Snowden leaks
 - NIST and RSA immediately recommend withdrawal

Post-quantum cryptography

- One thing quantum computers would be good for is breaking crypto
- Square root speedup of general search
 - Countermeasure: double symmetric security level
- Factoring and discrete log become poly-time
 - DH, RSA, DSA, elliptic curves totally broken
 - Totally new primitives needed (lattices, etc.)

Outline

Crypto failures, cont'd

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

More readings coming up

- More details on how to set up firewalls
- Burglar alarms and "mimicry" attack on IDSes
- Containing high-speed worms
- Virus evolution

HA2 in the home stretch

- All parts due Friday by 11:55pm
- Extra office hour Thursday 10-11am 4-225E

Outline

Crypto failures, cont'd

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Internet addition: middleboxes

- Original design: middle of net is only routers
 - End-to-end principle
- Modern reality: more functionality in the network
- Security is one major driver

Security/connectivity tradeoff

- A lot of security risk comes from a network connection
 - Attacker could be anywhere in the world
- Reducing connectivity makes security easier
- Connectivity demand comes from end users

What a firewall is

- Basically, a router that chooses not to forward some traffic
 - Based on an a-priori policy
- More complex architectures have multiple layers
 - DMZ: area between outer and inner layers, for outward-facing services

Inbound and outbound control

- Most obvious firewall use: prevent attacks from the outside
- Often also some control of insiders
 - Block malware-infected hosts
 - Employees wasting time on Facebook
 - Selling sensitive info to competitors
 - Nation-state Internet management
- May want to log or rate-limit, not block

Default: deny

- Usual whitelist approach: first, block everything
- Then allow certain traffic
- Basic: filter packets based on headers
- More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

- Design limit of 2³² hosts
 - Actually less for many reasons
- Addresses becoming gradually more scarce over a many-year scale
- Some high-profile exhaustions in 2011
- IPv6 adoption still very low, occasional signs of progress

Network address translation (NAT)

- Middlebox that rewrites addresses in packets
- Main use: allow inside network to use non-unique IP addresses
 - RFC 1918: 10.*, 192.168.*, etc.
 - While sharing one outside IP address
- Inside hosts not addressable from outside
 - De-facto firewall

Packet filtering rules

- Match based on:
 - Source IP address
 - Source port
 - Destination IP address
 - Destination port
 - Packet flags: TCP vs. UDP, TCP ACK, etc.
- Action, e.g. allow or block
- Obviously limited in specificity

Client and server ports

- TCP servers listen on well-known port numbers
 - Often < 1024, e.g. 22 for SSH or 80 for HTTP</p>
- Clients use a kernel-assigned random high port
- Plain packet filter would need to allow all high-port incoming traffic

Stateful filtering

- In general: firewall rules depend on previously-seen traffic
- Key instance: allow replies to an outbound connection
- See: port 23746 to port 80
- Allow incoming port 23746
 - To same inside host
- Needed to make a NAT practical

Circuit-level proxying

- Firewall forwards TCP connections for inside client
- Standard protocol: SOCKS
 - Supported by most web browsers
 - Wrapper approaches for non-aware apps
- Not much more powerful than packet-level filtering

Application-level proxying

- Knows about higher-level semantics
- Long history for, e.g., email, now HTTP most important
- More knowledge allows better filtering decisions
 - But, more effort to set up
- Newer: "transparent proxy"
 - Pretty much a man-in-the-middle

Tunneling

- Any data can be transmitted on any channel, if both sides agree
- E.g., encapsulate IP packets over SSH connection
 - Compare covert channels, steganography
- Powerful way to subvert firewall
 - Some legitimate uses

Outline

Crypto failures, cont'd

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

- The worst attacks are the ones you don't even know about
- Best case: stop before damage occurs
 - Marketed as "prevention"
- Still good: prompt response
- Challenge: what is an attack?

Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 - But don't know what's bad until you see it
 - More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Signature matching

- Signature is a pattern that matches known bad behavior
- Typically human-curated to ensure specificity
- See also: anti-virus scanners

Anomaly detection

- Learn pattern of normal behavior
- "Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Recall: FPs and FNs

- False positive: detector goes off without real attack
- False negative: attack happens without detection
- Any detector design is a tradeoff between these (ROC curve)

Signature and anomaly weaknesses

- Signatures
 - Won't exist for novel attacks
 - Often easy to attack around
- Anomaly detection
 - Hard to avoid false positives
 - Adversary can train over time

Base rate problems

- If the true incidence is small (low base rate), most positives will be false
 - Example: screening test for rare disease
- Easy for false positives to overwhelm admins
- E.g., 100 attacks out of 10 million packets, 0.01% FP rate
 - How many false alarms?

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won't keep using techniques that are detected
- Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

Wagner and Soto mimicry attack

- Host-based IDS based on sequence of syscalls
- **©** Compute $A \cap M$, where:
 - A models allowed sequences
 - M models sequences achieving attacker's goals
- Further techniques required:
 - Many syscalls made into NOPs
 - Replacement subsequences with similar effect

Next time

Malware and network denial of service