CSci 5271
Introduction to Computer Security
Day 19: Web security, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

DNSSEC, contd

DNSSEC goals and non-goals

+ Authenticity of positive replies
+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

Negative answers

©) Also don't want attackers to spoof
non-existence

m Gratuitous denial of service, force fallback,
etc.

©) But don't want to sign “x does not
exist” for all x

©) Solution 1, NSEC: “there is no name
between acacia and baobab”

Preventing zone enumeration

©) Many domains would not like people
enumerating all their entries

©) DNS is public, but "not that public”

©) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

) "DNS-based Authentication of Named
Entities”

©) DNS contains hash of TLS cert, don't
need CAs

) How is DNSSEC's tree of certs better
than TLS's?

Signing the root

) Political problem: many already distrust
US-centered nature of DNS
infrastructure

©) Practical problem: must be very secure
with no single point of failure
©) Finally accomplished in 2010
® Solution involves ‘key ceremonies’,

international committees, smart cards,
safe deposit boxes, etc.

Deployment

) Standard deployment problem: all cost
and no benefit to being first mover

) Servers working on it, mostly top-down
) Clients: still less than 20%

) Will be probably common: insecure
connection to secure resolver

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu YIonen
in 1995

) Original version commercialized

) Fully open-source OpenSSH from
OpenBSD

) Protocol redesigned and standardized
for "SSH 2"

OpenSSH t-shirt

www. OpenSSH.: ¢ o ~

Putting an end to unencrypted network logins

SSH host keys

) Every SSH server has a public/private
keypair
) Ideally, never changes once SSH is
installed
) Early generation is a classic entropy
problem
® Especially embedded systems, VMs

Authentication methods

) Password, encrypted over channel

) .shosts: like .rhosts, but using client
host key
) User-specific keypair
® Public half on server, private on client

) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

£ 1.x had only CRC for integrity
® Worst case: when used with RC4
) Injection attacks still possible with CBC
® CRC compensation attack
) For least-insecure 1.x-compatibility,
attack detector

©) Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

©) IV chaining: IV based on last message
ciphertext

® Allows chosen plaintext attacks
® Better proposal: separate, random IVs

) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arquable exploitability due to abort

©) Now migrating to CTR mode

SSH over SSH

) SSH to machine 1, from there to
machine 2
= Common in these days of NATs

) Better: have machine 1 forward an
encrypted connection (cf. HW1)

1. No need to trust 1 for secrecy
2. Timing attacks against password typing

SSH (non-)PKI

©) When you connect to a host freshly, a
mild note

©) When the host key has changed, a
large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! ¢l

100QOOOAC

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)'!

It is also possible that a host key has just been changed.

Outline

Announcements intermission

Upcoming assignments

) Hands-on assignment 2 is due Friday

) For best results, don't put off until last
minute

Outline

More crypto protocols

Abstract protocols

) Outline of what information is

communicated in messages
®m Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

) Describes honest operation

® But must be secure against adversarial
participants

) Seemingly simple, but many subtle
problems

Protocol notation

A — B: NB>{TO> B) NB}KB
©) A — B: message sent from Alice
intended for Bob

©) B (after :): Bob's name
0 {- - - }x: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange,
assuming public keys (core):

A — B: {Na,Alg,

B—A: {NA)NB}EA

A—B: {NB}EB

Needham-Schroeder MITM

A— C: {NA,A}EC
C—B: {NA,A}EB
B — C: {Na,Ngj,
C— A: {Na,Ngl,
A— C: {NB}EC
C—B: {NB}EB

Certificates, Denning-Sacco

) A certificate signed by a trusted
third-party S binds an identity to a
public key

B Chr= Siqns(A, Ka)

©) Suppose we want to use S in

establishing a session key Kag:
A—S: A/B

S—A: C Ay CB

A — B: Ca, Cg,{Sign (Kas))k,

Attack against Denning-Sacco

A—S: A/B
S—A: CaCs
A — B: Ca,Cg,{Signs(Kag)lk,

B—S: B,C
S—B: CB, CC
B — C: Ca, Cc,{Sign, (Kap)}k,

By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

) Encrypt then sign, or vice-versa?

) On paper, we usually sign inside an
envelope, not outside. Two reasons:
m Attacker gets letter, puts in his own
envelope (cf attack against X.509)
® Signer claims “didn't know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

) Use timestamps or nonces for
freshness

©) Be explicit about the context

©) Don't trust the secrecy of others’
secrets

£) Whenever you sign or decrypt, beware
of being an oracle

) Distinguish runs of a protocol

Implementation principles

) Ensure unigue message types and
parsing

) Design for ciphers and key sizes to
change

) Limit information in outbound error
messages

) Be careful with out-of-order messages

Outline

More causes of crypto failure

Random numbers and entropy

) Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
) But rely on truly random seeding to

stop brute force
® Extreme case: no entropy — always
same ‘randomness”

) Modern best practice: seed pool with

256 bits of entropy
® Suitable for security levels up to 225

Netscape RNG failure

) Early versions of Netscape SSL

(1994-1995) seeded with:

® Time of day
® Process ID
® Parent process ID

) Best case entropy only 64 bits

® (Not out of step with using 40-bit
encryption)

£) But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

©) OpenSSL has pretty good scheme
using /dev/urandom
) Also mixed in some uninitialized

variable values
® “Extra variation can't hurt”
©) From modern perspective, this was the
original sin
® Remember undefined behavior discussion?

) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out

some lines to fix a Valgrind warning
® "Potential use of uninitialized value”

) Accidentally disabled most entropy (all
but 16 bits)

) Brief mailing list discussion didn't lead
to understanding

) Broken library used for ~2 years before
discovery

Detected RSA/DSA collisions

) 2012: around 1% of the SSL keys on the

public net are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common
(detected by large-scale GCD)
©) One likely culprit: insufficient entropy in
key generation
®m Embedded devices, Linux /dev/urandom
Vs. /dev/random

) DSA signature algorithm also very
vulnerable

New factoring problem (CCS'17)

£) An Infineon RSA library used primes of
the form p = k- M + (65537% mod M)

©) Smaller problems: fingerprintable, less
entropy
©) Major problem: can factor with a

variant of Coppersmith’s algoritm
® Eg, 3 CPU months for a 1024-bit key

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

) Power analysis
® Especially useful against smartcards
) Fault injection

©) Data non-erasure
® Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

©) F&S: designed by a committee that
contained no cryptographers
©) Problem 1. note “privacy”: what about
integrity?
® Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

©) Single key known by all parties on
network

) Easy to compromise

©) Hard to change

) Also often disabled by default
©) Example: a previous employer

WEP key size and IV size

) Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =

64-bit RC4 key
m Both too small

) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs

® Least bad: sequential, collision takes
hours

® Worse: random or everyone starts at zero

WEP RCA4 related key attacks

©) Only true crypto weakness

) RC4 “key schedule” vulnerable when:
®m RC4 keys very similar (e.g., same key,
similar V)
m First stream bytes used
©) Not a practical problem for other RC4

users like SSL
® Key from a hash, skip first output bytes

New problem with WPA (CCS17)

) Session key set up in a 4-message

handshake
©) Key reinstallation attack: replay #3
® Causes most implementations to reset
nonce and replay counter
® In turn allowing many other attacks
® One especially bad case: reset key to O
) Protocol state machine behavior poorly

described in spec
® Outside the scope of previous security
proofs

Trustworthiness of primitives

) Classic worry: DES S-boxes

) Obviously in trouble if cipher chosen by
your adversary

) In a public spec, most worrying are
unexplained elements

) Best practice: choose constants from
well-known math, like digits of 7

Dual EC DRBG (1)

£) Pseudorandom generator in NIST
standard, based on elliptic curve

) Looks like provable (slow enough!) but
strangely no proof

) Specification includes long unexplained

constants
) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

) Found 2007: special choice of
constants allows prediction attacks
® Big red flag for paranoid academics
) Significant adoption in products sold to
US govt. FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)
) NSA scenario basically confirmed by

Snowden leaks
® NIST and RSA immediately recommend
withdrawal

