CSci 5271
Introduction to Computer Security
Day 19: Web security, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting

Reflected XSS

) Injected data used immediately in
producing a page

) Commonly supplied as query/form
parameters

) Classic attack is link from evil site to
victim site

Persistent XSS

©) Injected data used to produce page
later

©) For instance, might be stored in
database
©) Can be used by one site user to attack

another user
® E.g, to gain administrator privilege

DOM-based XSS

) Injected occurs in client-side page
construction

) Flaw at least partially in code running
on client

) Many attacks involve mashups and
inter-site communication

No string-free solution

) For server-side XSS, no way to avoid
string concatenation
) Web page will be sent as text in the
end
® Research topic: ways to change this?

£) XSS especially hard kind of injection

Danger: complex language embedding

©) JS and CSS are complex languages in
their own
) Can appear in various places with
HTML
m But totally different parsing rules
©) Example: "..." used for HTML
attributes and JS strings

® What happens when attribute contains
Js?

Danger: forgiving parsers

) History: handwritten HTML, browser
competition

£) Many syntax mistakes given “likely”
interpretations

©) Handling of incorrect syntax was not
standardized

Sanitization: plain text only

) Easiest case: no tags intended, insert
at document text level

) Escape HTML special characters with
entities like &1t ; for <

) OWASP recommendation:
& <>/

Sanitization: context matters

) An OWASP document lists 5 places in
a web page you might insert text
® For the rest, "don't do that”
) Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

©) In some applications, want to allow
benign markup like

) But, even benign tags can have JS
attributes
©) Handling well essentially requires an
HTML parser
® But with an adversarial-oriented design

Don't blacklist

©) Browser capabilities continue to evolve

£) Attempts to list all bad constructs
inevitably incomplete

©) Even worse for XSS than other
injection attacks

Filter failure: one-pass delete

©) Simple idea: remove all occurrences of
<script>
) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

©) UTF-7 is similar but uses only ASCII

©) Encoding can be specified in a <meta>
tag, or some browsers will guess

) +ADw-script+AD4-

Filter failure: event handlers

) Put this on something the user will be
tempted to click on
) There are more than 100 handlers like
this recognized by various browsers

Use good libraries

) Coding your own defenses will never
work

) Take advantage of known good
implementations
£) Best case: already built into your

framework
® Disappointingly rare

Content Security Policy

©) New HTTP header, W3C candidate
recommendation
) Lets site opt-in to stricter treatment of
embedded content, such as:
® No inline JS, only loaded from separate
URLs
® Disable JS eval et al.
) Has an interesting violation-reporting

mode

Outline

Announcements intermission

HA 2 questions

Network sniffing

Offline dictionary attack

Forging predictable cookies

SQL injection

Cross-site scripting

Crypto. attack against a poor MAC

O Uuh WN

Upcoming assignments

) Progress reports due tonight by
1:55pm
) Exercise set 3 due Thursday at 1:55pm

Outline

More cross-site risks

HTTP header injection

©) Untrusted data included in response
headers

©) Can include CRLF and new headers, or
premature end to headers

£) AKA “response splitting”

Content sniffing

) Browsers determine file type from
headers, extension, and content-based
guessing

® Latter two for ~ 1% server errors

£) Many sites host “untrusted” images
and media

) Inconsistencies in guessing lead to a
kind of XSS

® E.g, "chimera” PNG-HTML document

Cross-site request forgery

) Certain web form on bank . com used to
wire money

©) Link or script on evil.com loads it
with certain parameters

® Linking is exception to same-origin

o) If I'm logged in, money sent
automatically

) Confused deputy, cookies are ambient
authority

CSRF prevention

) Give site’s forms random-nonce tokens

® E.g, in POST hidden fields
® Not in a cookie, that's the whole point

) Reject requests without proper token
® Or, ask user to re-authenticate

) XSS can be used to steal CSRF tokens

Open redirects

£) Common for one page to redirect
clients to another
) Target should be validated
® With authentication check if appropriate
£) Open redirect. target supplied in

parameter with no checks

® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
®m We teach users to trust by site

Outline

Confidentiality and privacy

Site perspective

) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens
) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry
Data Security Standards)
m Health care (HIPAA), education (FERPA)
®m Whatever customers reasonably expect

You need to use SSL

) Finally coming around to view that
more sites need to support HTTPS

m Special thanks to WiFi, NSA
) If you take credit cards (of course)

©) If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.

Server-side encryption

) Also consider encrypting data “at rest”
) (Or, avoid storing it at all)
) Provides defense in depth

® Reduce damage after another attack

©) May be hard to truly separate keys

® OWASP example: public key for website
— backend credit card info

Adjusting client behavior

©) HTTPS and password fields are basic
hints
) Consider disabling autocomplete

m Usability tradeoff, save users from
themselves
® Finally standardized in HTML5

) Consider disabling caching
® Performance tradeoff
m Better not to have this on user's disk
® Or proxy? You need SSL

User vs. site perspective

©) User privacy goals can be opposed to
site goals
©) Such as in tracking for advertisements

) Browser makers can find themselves in

the middle
m Of course, differ in institutional pressures

Third party content / web bugs

©) Much tracking involves sites other than

the one in the URL bar
® For fun, check where your cookies are
coming from

) Various levels of cooperation

) Web bugs are typically 1x1 images used
only for tracking

FlLke <0

Cookies arms race

) Privacy-sensitive users like to block
and/or delete cookies

) Sites have various reasons to retain

identification
) Various workarounds:
® Similar features in Flash and HTML5
® Various channels related to the cache
m Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

) Combine various server or JS-visible

attributes passively
® User agent string (10 bits)
®m Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from
exhaustive)

History stealing

) History of what sites you've visited is
not supposed to be JS-visible
£) But, many side-channel attacks have

been possible
® Query link color
® CSS style with external image for visited
links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.q. fake CAPTCHA)

Browser and extension choices

) More aggressive privacy behavior lives
in extensions
® Disabling most JavaScript (NoScript)
m HTTPS Everywhere (whitelist)
® Tor Browser Bundle
) Default behavior is much more

controversial
® Concern not to kill advertising support as
an economic model

Outline

Even more web risks

Misconfiguration problems

) Default accounts
) Unneeded features

©) Framework behaviors

® Don't automatically create variables from
query fields

Openness tradeoffs

) Error reporting

® Few benign users want to see a stack
backtrace

) Directory listings
® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does
it?

Using vulnerable components

©) Large web apps can use a lot of
third-party code
) Convenient for attackers too

® OWASP: two popular vulnerable
components downloaded 22m times

) Hiding doesn't work if it's popular
£) Stay up to date on security
announcements

Clickjacking

) Fool users about what they're clicking
on
® Circumvent security confirmations
® Fabricate ad interest

) Example techniques:
® Frame embedding
® Transparency

® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

©) A lot of web content is free-of-charge,
but proprietary
® Yours in a certain context, if you view
ads, etc.

) Sites don't want it downloaded
automatically (web crawling)

) Or parsed and user for another
purpose (screen scraping)
©) High-rate or honest access detectable

Outline

DNSSEC

DNS: trusted but vulnerable

©) Almost every higher-level service
interacts with DNS
) UDP protocol with no authentication or

crypto

® Lots of attacks possible

) Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

-+ Authenticity of positive replies
-+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

) Each resource record gets an RRSIG
signature
® E.g, A record for one name—address

mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY
RRs

) Recursive chain up to the root (or other
“anchor”)

Add more indirection

£) DNS needs to scale to very large flat
domains like .com

) Facilitated by having single DS RR in
parent indicating delegation

) Chain to root now includes DSes as well

Negative answers

) Also don't want attackers to spoof
non-existence

® Gratuitous denial of service, force fallback,
etc.

©) But don't want to sign “x does not
exist” for all x

) Solution 1, NSEC: “there is no nhame
between acacia and baobab”

Preventing zone enumeration

£) Many domains would not like people
enumerating all their entries

) DNS is public, but "not that public”

) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

) "DNS-based Authentication of Named
Entities”

©) DNS contains hash of TLS cert, don't
need CAs

©) How is DNSSEC's tree of certs better
than TLS's?

Signing the root

) Political problem: many already distrust
US-centered nature of DNS
infrastructure

) Practical problem: must be very secure
with no single point of failure
) Finally accomplished in 2010

® Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

) Standard deployment problem: all cost
and no benefit to being first mover

) Servers working on it, mostly top-down
©) Clients: still less than 20%

) Will be probably common: insecure
connection to secure resolver

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu Ylonen
in 1995

©) Original version commercialized

) Fully open-source OpenSSH from
OpenBSD

) Protocol redesigned and standardized
for "SSH 2"

OpenSSH t-shirt

www - OpenSSH - << -

Putting an end to unencrypted network logins

SSH host keys

) Every SSH server has a public/private
keypair
©) Ideally, never changes once SSH is
installed
) Early generation a classic entropy
problem
® Especially embedded systems, VMs

Authentication methods

) Password, encrypted over channel
f) .shosts: like .rhosts, but using client
host key
) User-specific keypair
® Public half on server, private on client
©) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

©) 1x had only CRC for integrity
® Worst case: when used with RC4
) Injection attacks still possible with CBC
® CRC compensation attack
©) For least-insecure 1.x-compatibility,
attack detector
) Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

£) IV chaining: IV based on last message
ciphertext

® Allows chosen plaintext attacks
® Better proposal: separate, random Vs

) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arguable exploitability due to abort

£) Now migrating to CTR mode

SSH over SSH SSH (non-)PKI

©) SSH to machine 1, from there to 0 When you connect to a host fresth, a
machine 2 mild note
® Common in these days of NATs ©) When the host key has changed, a
©) Better: have machine 1 forward an large warning

encrypted connection (cf. HW1)
1. No need to trust 1 for secrecy
o . . IT IS POSSIBLE THAT SUMEUNE.IS DOING SOMETHING NASTY!
2. Tlmlng attacks agalnst password typlnq Someone could be eavesdropping on you right now

(man-in-the-middle attack)!
It is also possible that a host key has just been changed.

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!]

