
CSci 5271
Introduction to Computer Security

Day 19: Web security, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH

Reflected XSS

Injected data used immediately in
producing a page

Commonly supplied as query/form
parameters

Classic attack is link from evil site to
victim site

Persistent XSS

Injected data used to produce page
later

For instance, might be stored in
database
Can be used by one site user to attack
another user

E.g., to gain administrator privilege

DOM-based XSS

Injected occurs in client-side page
construction

Flaw at least partially in code running
on client

Many attacks involve mashups and
inter-site communication

No string-free solution

For server-side XSS, no way to avoid
string concatenation
Web page will be sent as text in the
end

Research topic: ways to change this?

XSS especially hard kind of injection



Danger: complex language embedding

JS and CSS are complex languages in
their own
Can appear in various places with
HTML

But totally different parsing rules

Example: "..." used for HTML
attributes and JS strings

What happens when attribute contains
JS?

Danger: forgiving parsers

History: handwritten HTML, browser
competition

Many syntax mistakes given “likely”
interpretations

Handling of incorrect syntax was not
standardized

Sanitization: plain text only

Easiest case: no tags intended, insert
at document text level

Escape HTML special characters with
entities like &lt; for <

OWASP recommendation:
& < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in
a web page you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

In some applications, want to allow
benign markup like <b>

But, even benign tags can have JS
attributes
Handling well essentially requires an
HTML parser

But with an adversarial-oriented design

Don’t blacklist

Browser capabilities continue to evolve

Attempts to list all bad constructs
inevitably incomplete

Even worse for XSS than other
injection attacks



Filter failure: one-pass delete

Simple idea: remove all occurrences of
<script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta>

tag, or some browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

<IMG onmouseover="alert('xss')">

Put this on something the user will be
tempted to click on

There are more than 100 handlers like
this recognized by various browsers

Use good libraries

Coding your own defenses will never
work

Take advantage of known good
implementations
Best case: already built into your
framework

Disappointingly rare

Content Security Policy

New HTTP header, W3C candidate
recommendation
Lets site opt-in to stricter treatment of
embedded content, such as:

No inline JS, only loaded from separate
URLs
Disable JS eval et al.

Has an interesting violation-reporting
mode

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH



HA 2 questions

1. Network sniffing

2. Offline dictionary attack

3. Forging predictable cookies

4. SQL injection

5. Cross-site scripting

6. Crypto. attack against a poor MAC

Upcoming assignments

Progress reports due tonight by
11:55pm

Exercise set 3 due Thursday at 11:55pm

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH

HTTP header injection

Untrusted data included in response
headers

Can include CRLF and new headers, or
premature end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from
headers, extension, and content-based
guessing

Latter two for � 1% server errors

Many sites host “untrusted” images
and media
Inconsistencies in guessing lead to a
kind of XSS

E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to
wire money
Link or script on evil.com loads it
with certain parameters

Linking is exception to same-origin

If I’m logged in, money sent
automatically
Confused deputy, cookies are ambient
authority



CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect
clients to another
Target should be validated

With authentication check if appropriate

Open redirect: target supplied in
parameter with no checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry
Data Security Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that
more sites need to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website
! backend credit card info



Adjusting client behavior

HTTPS and password fields are basic
hints
Consider disabling autocomplete

Usability tradeoff, save users from
themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to
site goals

Such as in tracking for advertisements

Browser makers can find themselves in
the middle

Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than
the one in the URL bar

For fun, check where your cookies are
coming from

Various levels of cooperation

Web bugs are typically 1x1 images used
only for tracking

Cookies arms race

Privacy-sensitive users like to block
and/or delete cookies

Sites have various reasons to retain
identification
Various workarounds:

Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

Combine various server or JS-visible
attributes passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from

exhaustive)

History stealing

History of what sites you’ve visited is
not supposed to be JS-visible
But, many side-channel attacks have
been possible

Query link color
CSS style with external image for visited
links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)



Browser and extension choices

More aggressive privacy behavior lives
in extensions

Disabling most JavaScript (NoScript)
HTTPS Everywhere (whitelist)
Tor Browser Bundle

Default behavior is much more
controversial

Concern not to kill advertising support as
an economic model

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from
query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack
backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does
it?

Using vulnerable components

Large web apps can use a lot of
third-party code
Convenient for attackers too

OWASP: two popular vulnerable
components downloaded 22m times

Hiding doesn’t work if it’s popular

Stay up to date on security
announcements

Clickjacking

Fool users about what they’re clicking
on

Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”



Crawling and scraping

A lot of web content is free-of-charge,
but proprietary

Yours in a certain context, if you view
ads, etc.

Sites don’t want it downloaded
automatically (web crawling)

Or parsed and user for another
purpose (screen scraping)

High-rate or honest access detectable

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH

DNS: trusted but vulnerable

Almost every higher-level service
interacts with DNS
UDP protocol with no authentication or
crypto

Lots of attacks possible

Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG

signature
E.g., A record for one name!address
mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY

RRs

Recursive chain up to the root (or other
“anchor”)

Add more indirection

DNS needs to scale to very large flat
domains like .com

Facilitated by having single DS RR in
parent indicating delegation

Chain to root now includes DSes as well



Negative answers

Also don’t want attackers to spoof
non-existence

Gratuitous denial of service, force fallback,
etc.

But don’t want to sign “x does not
exist” for all x

Solution 1, NSEC: “there is no name
between acacia and baobab”

Preventing zone enumeration

Many domains would not like people
enumerating all their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named
Entities”

DNS contains hash of TLS cert, don’t
need CAs

How is DNSSEC’s tree of certs better
than TLS’s?

Signing the root

Political problem: many already distrust
US-centered nature of DNS
infrastructure

Practical problem: must be very secure
with no single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost
and no benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 20%

Will be probably common: insecure
connection to secure resolver

Outline

Cross-site scripting

Announcements intermission

More cross-site risks

Confidentiality and privacy

Even more web risks

DNSSEC

SSH



Short history of SSH

Started out as freeware by Tatu Ylönen
in 1995

Original version commercialized

Fully open-source OpenSSH from
OpenBSD

Protocol redesigned and standardized
for “SSH 2”

OpenSSH t-shirt

SSH host keys

Every SSH server has a public/private
keypair

Ideally, never changes once SSH is
installed
Early generation a classic entropy
problem

Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client
host key
User-specific keypair

Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility,
attack detector

Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message
ciphertext

Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode



SSH over SSH

SSH to machine 1, from there to
machine 2

Common in these days of NATs

Better: have machine 1 forward an
encrypted connection (cf. HW1)

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a
mild note

When the host key has changed, a
large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.


