
CSci 5271
Introduction to Computer Security

Day 18: Web security, part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

CA validation standards

CA’s job to check if the buyer really is
foo.com
Race to the bottom problem:

CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

Many HTTPS security challenges tied
with user decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example
later

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with
formatting and links

All pages public, so no need for
authentication or encryption

Web applications

The modern web depends heavily on
active software

Static pages have ads, paywalls, or
“Edit” buttons

Many web sites are primarily forms or
storefronts

Web hosted versions of desktop apps
like word processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and
frameworks

Wide variety of commercial,
open-source, and custom-written
Flexible scripting languages for ease of
development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to
other uses
ActiveX: Windows-only binaries, no
sandboxing

Glad to see it on the way out

Flash and Silverlight: most important
use is DRM-ed video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed
prototype-OO language

No real similarity with Java

Document Object Model (DOM): lets JS
interact with pages and the browser

Extensive security checks for
untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed
only with the same origin

Different sites are (mostly) isolated
applications

GET, POST, and cookies

GET request loads a URL, may have
parameters delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have
side-effects

Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff
unencrypted data

Unprotected coffee shop WiFi

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

Upcoming assignments

Project progress reports due
Wednesday

Exercise set 3 due Thursday

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

Relational model and SQL

Relational databases have tables with
rows and single-typed columns

Used in web sites (and elsewhere) to
provide scalable persistent storage

Allow complex queries in a declarative
language SQL

Example SQL queries

SELECT name, grade FROM

Students WHERE grade < 60

ORDER BY name;

UPDATE Votes SET count =

count + 1 WHERE candidate =

'John';

Template: injection attacks

Your program interacts with an
interpreted language

Untrusted data can be passed to the
interpreter

Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection

Why is this named most critical web
app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact
contents

E.g., logins or credit cards on commerce
site

Strings do not respect syntax

Key problem: assembling commands as
strings

"WHERE name = '$name';"

Looks like $name is a string

Try
$name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a
whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as
strings
SQL mechanism: prepared statement

Original motivation was performance

Web languages/frameworks often
provide other syntax

Retain functionality: escape

Sanitizing data is transforming it to
prevent an attack
Escaped data is encoded to match
language rules for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between
servers
Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

Allow only things you know to be
safe/intended

Error or delete anything else

Short whitelist is easy and relatively
easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: blacklisting

Space of possible attacks is endless,
don’t try to think of them all

Want to guess how many more
comment formats SQL has?

Particularly silly: blacklisting 1=1

Attacking without the program

Often web attacks don’t get to see the
program

Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself:
if (x) delay 10 seconds

Trick to remember: go one character at
a time

Injection beyond SQL

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Shell commands: example from Ex. 1

More web examples to come

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

Per-website authentication

Many web sites implement their own
login systems
+ If users pick unique passwords, little

systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must

implement correctly
- Without enough framework support, many

possible pitfalls

Building a session

HTTP was originally stateless, but many
sites want stateful login sessions

Building by tying requests together with
a shared session ID

Must protect confidentiality and
integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be
unforgeable

E.g., data with properly used MAC
Negative example: crypt(username k
server secret)

Session ID: where

Session IDs in URLs are prone to
leaking

Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only
under HTTPS

Because of CSRF (next time), should
also have a non-cookie unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log
out from public browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed
password storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show
what’s possible

But must not rely on client to perform
checks

Attackers can read/modify anything on
the client side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter
names resource directly

E.g., database key, filename (path
traversal)

Easy to forget to validate on each use

Alternative: indirect reference like
per-session table

Not fundamentally more secure, but
harder to forget check

Function-level access control

E.g. pages accessed by URLs or
interface buttons
Must check each time that user is
authorized

Attack: find URL when authorized, reuse
when logged off

Helped by consistent structure in code

Outline

SSL/TLS (leftovers)

The web from a security perspective

Announcements intermission

SQL injection

Web authentication failures

Cross-site scripting

XSS: HTML/JS injection

Note: CSS is “Cascading Style Sheets”

Another use of injection template

Attacker supplies HTML containing
JavaScript (or occasionally CSS)
OWASP’s most prevalent weakness

A category unto itself
Easy to commit in any dynamic page
construction

Why XSS is bad (and named that)

attacker.com can send you evil JS
directly

But XSS allows access to bank.com

data

Violates same-origin policy

Not all attacks actually involve multiple
sites

Reflected XSS

Injected data used immediately in
producing a page

Commonly supplied as query/form
parameters

Classic attack is link from evil site to
victim site

Persistent XSS

Injected data used to produce page
later

For instance, might be stored in
database
Can be used by one site user to attack
another user

E.g., to gain administrator privilege

DOM-based XSS

Injected occurs in client-side page
construction

Flaw at least partially in code running
on client

Many attacks involve mashups and
inter-site communication

No string-free solution

For server-side XSS, no way to avoid
string concatenation
Web page will be sent as text in the
end

Research topic: ways to change this?

XSS especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in
their own right
Can appear in various places with
HTML

But totally different parsing rules

Example: "..." used for HTML
attributes and JS strings

What happens when attribute contains
JS?

Danger: forgiving parsers

History: handwritten HTML, browser
competition

Many syntax mistakes given “likely”
interpretations

Handling of incorrect syntax was not
standardized

Sanitization: plain text only

Easiest case: no tags intended, insert
at document text level

Escape HTML special characters with
entities like < for <

OWASP recommendation:
& < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in
a web page you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

In some applications, want to allow
benign markup like

But, even benign tags can have JS
attributes
Handling well essentially requires an
HTML parser

But with an adversarial-oriented design

Don’t blacklist

Browser capabilities continue to evolve

Attempts to list all bad constructs
inevitably incomplete

Even worse for XSS than other
injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of
<script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta>

tag, or some browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be
tempted to click on

There are more than 100 handlers like
this recognized by various browsers

Use good libraries

Coding your own defenses will never
work

Take advantage of known good
implementations
Best case: already built into your
framework

Disappointingly rare

Content Security Policy

New HTTP header, W3C candidate
recommendation
Lets site opt-in to stricter treatment of
embedded content, such as:

No inline JS, only loaded from separate
URLs
Disable JS eval et al.

Has an interesting violation-reporting
mode

