
CSci 5271
Introduction to Computer Security

Day 11: OS security: higher assurance
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Multilevel and mandatory access control

Capability-based access control

Announcements intermission

OS trust and assurance

More Unix access control

Bell-LaPadula, linear case

State-machine-like model developed for
US DoD in 1970s

1. A subject at one level may not read a
resource at a higher level

Simple security property, “no read up”
2. A subject at one level may not write a

resource at a lower level
* property, “no write down”

High watermark property

Dynamic implementation of BLP

Process has security level equal to
highest file read

Written files inherit this level

Biba and low watermark

Inverting a confidentiality policy gives
an integrity one

Biba: no write up, no read down

Low watermark policy

BLP ^ Biba ) levels are isolated

Information-flow perspective

Confidentiality: secret data should not
flow to public sinks

Integrity: untrusted data should not flow
to critical sinks

Watermark policies are process-level
conservative abstractions



Covert channels

Problem: conspiring parties can misuse
other mechanisms to transmit
information
Storage channel: writable shared state

E.g., screen brightness on mobile phone

Timing channel: speed or ordering of
events

E.g., deliberately consume CPU time

Multilateral security / compartments

In classification, want finer divisions
based on need-to-know

Also, selected wider sharing (e.g., with
allied nations)
Many other applications also have this
character

Anderson’s example: medical data

How to adapt BLP-style MAC?

Partial orders and lattices

� on integers is a total order
Reflexive, antisymmetric, transitive, a � b

or b � a

Dropping last gives a partial order

A lattice is a partial order plus
operators for:

Least upper bound or join t
Greatest lower bound or meet u

Example: subsets with �, [, \

Subset lattice example

Subset lattice example Lattice model

Generalize MLS levels to elements in a
lattice

BLP and Biba work analogously with
lattice ordering

No access to incomparable levels

Potential problem: combinatorial
explosion of compartments



Classification lattice example Lattice BLP example

Another notation

Faculty
! (Faculty, ?)

Faculty//5271
! (Faculty, f5271g)

Faculty//5271//8271
! (Faculty, f5271; 8271g)

MLS operating systems

1970s timesharing, including Multics

“Trusted” versions of commercial Unix
(e.g. Solaris)

SELinux (called “type enforcement”)

Integrity protections in Windows Vista
and later

Multi-VM systems

One (e.g., Windows) VM for each
security level

More trustworthy OS underneath
provides limited interaction

E.g., NSA NetTop: VMWare on SELinux

Downside: administrative overhead

Air gaps, pumps, and diodes

The lack of a connection between
networks of different levels is called an
air gap

A pump transfers data securely from
one network to another

A data diode allows information flow in
only one direction



Chelsea Manning cables leak

Manning (née Bradley) was an
intelligence analyst deployed to Iraq
PC in a T-SCIF connected to SIPRNet
(Secret), air gapped
CD-RWs used for backup and software
transfer
Contrary to policy: taking such a
CD-RW home in your pocket
http://www.fas.org/sgp/jud/manning/022813-statement.pdf

Outline

Multilevel and mandatory access control

Capability-based access control

Announcements intermission

OS trust and assurance

More Unix access control

ACLs: no fine-grained subjects

Subjects are a list of usernames
maintained by a sysadmin

Unusual to have a separate subject for
an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available
authority

Authority applied incorrectly leads to
attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file,
disrupt billing

(Object) capabilities

A capability both designates a resource
and provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel



Capability slogans (Miller et al.)

No designation without authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using
cryptographic certificates

Revocation with capabilities

Use indirection: give real capability via
a pair of middlemen

A! B via A! F! R! B

Retain capability to tell R to drop
capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it
cannot communicate with A at all

Disconnected parts of the capability
graph cannot be reconnected

Depends on controlled delegation and
data/capability distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability
design from seL4

Used as a hypervisor, e.g. underneath
paravirtualized Linux

Shipped on over 1 billion cell phones



Joe-E and Caja

Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript
type safety

Outline

Multilevel and mandatory access control

Capability-based access control

Announcements intermission

OS trust and assurance

More Unix access control

Deadlines reminder

Tonight: Project progress reports

Thursday: Ex. 2

Friday: HA1 attack(s) 5 (extra credit)

Monday: midterm

Midterm exam Monday

Usual class time and location

Covers up through today’s lecture

Mix of short-answer and exercise-like
questions

Open books/notes/printouts, no
computers or other electronics

Sample exams w/solutions (2013-2015)
posted

Outline

Multilevel and mandatory access control

Capability-based access control

Announcements intermission

OS trust and assurance

More Unix access control

Trusted and trustworthy

Part of your system is trusted if its
failure can break your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed:
trusted boot, Trusted Solaris, etc.



Trusted (I/O) path

How do you know you’re talking to the
right software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root
password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy
goal
Reference monitor � TCB

But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an
independent party

Goal: separate incentives, separate
accountability

Compare with financial auditing

Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

Trusted Computer System Evaluation
Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

International standard and agreement
for IT security certification

Certification against a protection profile,
and evaluation assurance level EAL 1-7

Evaluation performed by
non-government labs

Up to EAL 4 automatically
cross-recognized



Common Criteria, Anderson’s view

Many profiles don’t specify the right
things
OSes evaluated only in unrealistic
environments

E.g., unpatched Windows XP with no
network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for
by vendor
Labs beholden to national security
apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other
tradeoffs

E.g., bounded size model

Starting to become possible:
machine-checked proof

Proof and complexity

Formal proof is only feasible for
programs that are small and elegant

If you honestly care about assurance,
you want your TCB small and elegant
anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and
ongoing)

7.5 kL C, 200 kL proof, 160 bugs fixed, 25
person years

CompCert C-subset compiler (PLDI’06
and ongoing)

RockSalt SFI verifier (PLDI’12)

Outline

Multilevel and mandatory access control

Capability-based access control

Announcements intermission

OS trust and assurance

More Unix access control

Special case: /tmp

We’d like to allow anyone to make files
in /tmp

So, everyone should have write
permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000



Special case: group inheritance

When using group to manage
permissions, want a whole tree to have
a single group
When 02000 bit set, newly created
entries with have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit
02000

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly
Unix-like
Multiple user and group entries

Decision still based on one entry

Default ACLs: generalize group
inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of
legacy code

Suggests: “fail closed”

Contrary pressure: don’t want to break
functionality

Suggests: “fail open”

POSIX ACL design: old group
permission bits are a mask on all novel
permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35)
pieces

Note: not real capabilities

First runtime only, then added to FS
similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are
enough to regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to
drop privileges

Use of temporary files by no-longer
setuid programs

For more details: “Exploiting
capabilities”, Emeric Nasi


