CSci 5271
Introduction to Computer Security
Day 1I: OS security: higher assurance

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Multilevel and mandatory access control

Bell-LaPadula, linear case

) State-machine-like model developed for
US DoD in 1970s
1. A subject at one level may not read a
resource at a higher level
® Simple security property, *no read up”
2. A subject at one level may not write a
resource at a lower level
® * property, "no write down”

High watermark property

£) Dynamic implementation of BLP

) Process has security level equal to
highest file read

) Written files inherit this level

Biba and low watermark

©) Inverting a confidentiality policy gives
an integrity one

) Biba: no write up, no read down

©) Low watermark policy

) BLP A Biba = levels are isolated

Information-flow perspective

) Confidentiality: secret data should not
flow to public sinks

) Integrity: untrusted data should not flow
to critical sinks

) Watermark policies are process-level
conservative abstractions

Covert channels

) Problem: conspiring parties can misuse
other mechanisms to transmit
information

) Storage channel: writable shared state

® E.g, screen brightness on mobile phone
©) Timing channel: speed or ordering of

events
® Eg, deliberately consume CPU time

Multilateral security / compartments

£ In classification, want finer divisions
based on need-to-know

£ Also, selected wider sharing (e.g., with
allied nations)
£) Many other applications also have this
character
® Anderson’s example: medical data

©) How to adapt BLP-style MAC?

Partial orders and lattices

©) < on integers is a total order
® Reflexive, antisymmetric, transitive, a < b
orb<a
©) Dropping last gives a partial order

©) A lattice is a partial order plus
operators for:
® Least upper bound or join L
® Greatest lower bound or meet M

©) Example: subsets with C, U, N

Subset lattice example

{1, 2, 3}

{1‘2} 2}<{1, 3}

{1} {2} {3}
%

Subset lattice example

{123}

{1 3} {2 3}

\XK

{2}

Lattice model

) Generalize MLS levels to elements in a
lattice

) BLP and Biba work analogously with
lattice ordering

©) No access to incomparable levels

) Potential problem: combinatorial
explosion of compartments

Classification lattice example

Faculty//5271//8271

Faculty// a //18271

cul
TA//5271//8271
| —

TA/I5 A//8271

i

A

| stadenty/s221//8271

Student//5271 ent//8271

Student

Lattice BLP example

Faculty//5271//8271

w
Faculty// a //8271

cul
TA//5271//8271
—W

RW
TA/IS A/18271

TR

- stadent; 1//8271

R
Student 71 ent//8271

R
Student

Another notation

Faculty

— (Faculty, @)
Faculty//5271

— (Faculty, {5271})
Faculty//5271//82T1

— (Faculty, {5271, 8271})

MLS operating systems

£) 1970s timesharing, including Multics

£) "Trusted” versions of commercial Unix
(e.9. Solaris)

©) SELinux (called “type enforcement”)

©) Integrity protections in Windows Vista
and later

Multi-VM systems

©) One (e.g., Windows) VM for each
security level

) More trustworthy OS underneath
provides limited interaction

©) Eg, NSA NetTop: VMWare on SELinux

) Downside: administrative overhead

Air gaps, pumps, and diodes

) The lack of a connection between
networks of different levels is called an
air gap

©) A pump transfers data securely from
one network to another

©) A data diode allows information flow in
only one direction

Chelsea Manning cables leak

©) Manning (née Bradley) was an
intelligence analyst deployed to Iraq

©) PC in a T-SCIF connected to SIPRNet
(Secret), air gapped

) CD-RWs used for backup and software
transfer

) Contrary to policy: taking such a
CD-RW home in your pocket

http://www.fas.org/sgp/jud/manning/022813-statement .pdf

Outline

Capability-based access control

ACLs: no fine-grained subjects

) Subjects are a list of usernames
maintained by a sysadmin

©) Unusual to have a separate subject for
an application

) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity

©) Kernel automatically applies all available
authority

) Authority applied incorrectly leads to
attacks

Confused deputy problem

) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file,
disrupt billing

(Object) capabilities

©) A capability both designates a resource
and provides authority to access it
©) Similar to an object reference
® Unforgeable, but can copy and distribute

) Typically still managed by the kernel

Capability slogans (Miller et al)

) No designation without authority

©) Dynamic subject creation

) Subject-aggregated authority mgmt.
©) No ambient authority

) Composability of authorities

) Access-controlled delegation

) Dynamic resource creation

Partial example: Unix FDs

) Authority to access a specific file
) Managed by kernel on behalf of process

) Can be passed between processes
® Though rare other than parent to child

©) Unix not designed to use pervasively

Distinguish: password capabilities

©) Bit pattern itself is the capability
® No centralized management
) Modern example: authorization using
cryptographic certificates

Revocation with capabilities

) Use indirection: give real capability via
a pair of middlemen

DA —->BviaA—>F—-R—B

£) Retain capability to tell R to drop
capability to B

) Depends on composability

Confinement with capabilities

©) A cannot pass a capability to B if it
cannot communicate with A at all

) Disconnected parts of the capability
graph cannot be reconnected

) Depends on controlled delegation and
data/capability distinction

OKL4 and selL4

) Commercial and research microkernels

) Recent versions of OKL4 use capability
design from selL4

©) Used as a hypervisor, e9. underneath
paravirtualized Linux

) Shipped on over 1 billion cell phones

Joe-E and Caja

) Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

©) Eg, of JavaScript in an advertisement

) Note reliance on Java and JavaScript
type safety

Outline

Announcements intermission

Deadlines reminder

) Tonight: Project progress reports

©) Thursday: Ex. 2

) Friday: HAI attack(s) 5 (extra credit)
£) Monday: midterm

Midterm exam Monday

£) Usual class time and location

) Covers up through today’s lecture

£) Mix of short-answer and exercise-like
guestions

©) Open books/notes/printouts, no
computers or other electronics

£) Sample exams w/solutions (2013-2015)
posted

Outline

OS trust and assurance

Trusted and trustworthy

©) Part of your system is trusted if its
failure can break your security

£) Thus, OS is almost always trusted
©) Real question: is it trustworthy?

) Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/0) path

) How do you know you're talking to the
right software?

©) And no one is sniffing the data?

©) Example: Trojan login screen

® Or worse: unlock screensaver with root
password
® Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

©) Kernel — microkernel — nanokernel

) Reference monitor concept

) TCB size: measured relative to a policy
goal

©) Reference monitor C TCB
® But hard to build monitor for all goals

How to gain assurance

) Use for a long time

) Testing

) Code / design review
©) Third-party certification
) Formal methods / proof

Evaluation / certification

) Testing and review performed by an
independent party

©) Goal: separate incentives, separate
accountability

) Compare with financial auditing

) Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

) Trusted Computer System Evaluation
Criteria

D. Minimal protection
C. Discretionary protection

®m C2 adds, eg, secure audit over Cl
B. Mandatory protection

® Bl<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

©) International standard and agreement
for IT security certification

) Certification against a protection profile,
and evaluation assurance level EAL 1-7

©) Evaluation performed by
non-government labs

©) Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

©) Many profiles don't specify the right
things
) OSes evaluated only in unrealistic
environments
® Eg, unpatched Windows XP with no
network attacks
) “"Corruption, Manipulation, and Inertia”
® Pernicious innovation: evaluation paid for
by vendor
® Labs beholden to national security
apparatus

Formal methods and proof

©) Can math come to the rescue?
) Checking design vs. implementation

) Automation possible only with other
tradeoffs
® E.g, bounded size model
) Starting to become possible:
machine-checked proof

Proof and complexity

) Formal proof is only feasible for
programs that are small and elegant

) If you honestly care about assurance,
you want your TCB small and elegant
anyway

) Should provability further guide design?

Some hopeful proof results

) seL4 microkernel (SOSP'09 and
ongoing)
®m 75 kL C, 200 KL proof, 160 bugs fixed, 25
person years

) CompCert C-subset compiler (PLDI'0O6
and ongoing)
©) RockSalt SF1 verifier (PLDI'2)

Outline

More Unix access control

Special case: /tmp

) Wed like to allow anyone to make files
in /tmp

) So, everyone should have write
permission

©) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000

Special case: group inheritance

£) When using group to manage
permissions, want a whole tree to have
a single group

©) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

) Also, directories will themselves inherit

02000

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
) Multiple user and group entries
m Decision still based on one entry
) Default ACLs: generalize group
inheritance

£) Command line: getfacl, setfacl

ACL legacy interactions

) Hard problem: don't break security of
legacy code
® Suggests: “fail closed”
) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

£) First runtime only, then added to FS
similar to setuid

) Motivating example: ping
£ Also allows permanent disabling

Privilege escalation dangers

) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
® CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)

Legacy interaction dangers

©) Former bug: take away capability to
drop privileges

£) Use of temporary files by no-longer
setuid programs

) For more details: "Exploiting
capabilities”, Emeric Nasi

