CSci 5271
Introduction to Computer Security
Day 5: Low-level defenses and
counterattacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Exploiting other vulnerabilities

Null pointer dereference

©) Add offset to make a predictable
pointer
® On Windows, interesting address start low
) Allocate data on the zero page

® Most common in user-space to kernel
attacks
® Read more dangerous than a write

Format string attack

) Attacker-controlled format: little
interpreter
) Step one: add extra integer specifiers,

dump stack
® Already useful for information disclosure

Format string attack layout

caller locals,
other frames

spec.
arg #2
spec.
arg #1 argument
format pointer
string
ptr \
T %X %X %X %X %X
laddress
caller frame

printf frame

Format string attack layout

caller locals,
other frames

]

spec.
arg #2

spec.
arg #1 argument

ol pointer
string
ptr
return \
address
caller frame

printf frame

%X %X %X %X %X




Format string attack: overwrite

) Jin specifier: store number of chars
written so far to pointer arg

) Advance format arg pointer to other
attacker-controlled data

) Control number of chars written with
padding

) On x86, use unaligned stores to create

pointer

Outline

Return address protections

Canary in the coal mine

R W
o i1 e ,'iz{;
r! i
‘:-r~y' Fw‘,\ fad

IR :‘ g "!f“‘

! o S
\.. yut,
!
Nl o

M‘_‘

M‘

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

12(%ebp)
8(%ebp)
%14 (%ebp)

l«—— %ebp

~ |-4(%ebp)

-8(%ebp)

%esp 10] |-16(%ebp)

Terminator canary

) Value hard to reproduce because it
would tell the copy to stop
) StackGuard: Ox00 OD OA FF

® O: String functions

newline: fgets(), etc.

-1 getc()

® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

ae

Random canary

) Can't reproduce because attacker can't
quess

) For efficiency, usually one per execution

) Ineffective if disclosed




XOR canary

£) Want to protect against non-sequential
overwrites

) XOR return address with value ¢ at
entry

) XOR again with ¢ before return

) Standard choice for c: see random
canary

Further refinements

©) More flexible to do earlier in compiler

©) Rearrange buffers after other variables
® Reduce chance of non-control overwrite
) Skip canaries for functions with only

small variables
® Who has an overflow bug in an 8-byte
array?

What's usually not protected?

) Backwards overflows

£) Function pointers

©) Adjacent structure fields

) Adjacent static data objects

Where to keep canary value

©) Fast to access
) Buggy code/attacker can't read or write
) Linux/x86: %gs :0x14

Complex anti-canary attack

) Canary not updated on fork in server

) Attacker controls number of bytes
overwritten

Complex anti-canary attack

©) Canary not updated on fork in server

) Attacker controls number of bytes
overwritten

) ANRY BNRY CNRY DNRY ENRY FNRY
) search 232 — search 4 - 28




Shadow return stack

) Suppose you have a safe place to store
the canary

) Why not just store the return address
there?

) Needs to be a separate stack
) Ultimate return address protection

Outline

Announcements intermission

You may notice

) We're catching up with the readings
) Today: StackGuard, ASLR attacks
) Next time: CFl, Shacham ROP

Pre-proposals due tonight

) Most groups formed?

£) One PDF per group, include schedule
choices

©) Submit via Moodle by 1:55pm

Supplemental office hours tomorrow

) Tomorrow (Thursday), flam-noon in
4-225E

©) Are my reqular office hours at bad
times?

HA1 reminders

©) Attack 2 due Friday, harder than
attack 1

) Keep backups if you need to reset VM

) Consider Moodle or email to both staff
with questions




BCECHO

©) An even simpler buffer overflow
example

) Can compile like BCVI, install setuid root
©) Will use for attack demo purposes

Outline

BCECHO demo

Outline

ASLR and counterattacks

Basic idea

©) "Address Space Layout Randomization”

) Move memory areas around randomly
so attackers can't predict addresses
©) Keep internal structure unchanged
® E.g, whole stack moves together

Code and data locations

) Execution of code depends on memory
location
©) Eg., on 32-bit x86:
® Direct jumps are relative

® Function pointers are absolute
® Data must be absolute

Relocation (Windows)

) Extension of technique already used in
compilation

©) Keep table of absolute addresses,
instructions on how to update

) Disadvantage: code modifications take
time on load, prevent sharing




PIC/PIE (GNU/Linux)

) “Position-Independent Code /
Executable”

) Keep code unchanged, use register to
point to data area

) Disadvantage: code complexity, register
pressure hurt performance

What's not covered

) Main executable (Linux 32-bit PIC)
©) Incompatible DLLs (Windows)
) Relative locations within a module/area

Entropy limitations

©) Intuitively, entropy measures amount of
randomness, in bits

©) Random 32-bit int: 32 bits of entropy
) ASLR page aligned, so at most
32 — 12 = 20 bits of entropy
) Other constraints further reduce
possibilities

Leakage limitations

o) If an attacker learns the randomized
base address, can reconstruct other
locations

©) Any stack address — stack
unprotected, etc.

GOT hijack (Mdller)

©) Main program fixed, libc randomized

©) PLT in main program used to call libc

©) Rewire PLT to call attacker’s favorite
libc functions

O Eg, turn printf into system

GOT hijack (Mdiller)

printf@plt: jmp *0x8049678
system@plt: jmp *0x804967c¢

0x8049678: <addr of printf in libc>
0x804967c: <addr of system in libc>




ret2pop (Miuiller)

) Take advantage of shellcode pointer
already present on stack
©) Rewrite intervening stack to treat the

shellcode pointer like a return address
® A long sequence of chained returns, one
pop

ret2pop (Miuiller)

a9 _| . shellcode

Outline

WoX (DEP)

Basic idea

) Traditional shellcode must go in a
memory area that is

m writable, so the shellcode can be inserted
m executable, so the shellcode can be
executed

) But benign code usually does not need
this combination
o W xor X, really =(W A X)

Non-writable code, X — =W

©) E.g, read-only text section
) Has been standard for a while,
especially on Unix

) Lets OS efficiently share code with
multiple program instances

Non-executable data, W — —X

) Prohibit execution of static data, stack,
heap
©) Not a problem for most programs

® Incompatible with some GCC features no
one uses

= Non-executable stack opt-in on Linux, but
now near-universal




Implementing W & X

) Page protection implemented by CPU

® Some architectures (e.g. SPARC) long
supported W ¢ X

) x86 historically did not
® One bit controls both read and execute
® Partial stop-gap “code segment limit”
) Eventual obvious solution: add new bit
m NX (AMD), XD (Intel), XN (ARM)

One important exception

©) Remaining important use of
self-modifying code: just-in-time (JIT)
compilers
® E.g, all modern JavaScript engines
©) Allow code to re-enable execution
per-block

® mprotect, VirtualProtect
= Now a favorite target of attackers

Counterattack: code reuse

) Attacker can't execute new code

) So, take advantage of instructions
already in binary

©) There are usually a lot of them
©) And no need to obey original structure

Classic return-to-libc (1997)

) Overwrite stack with copies of:

® Pointer to libc’s system function
® Pointer to "/bin/sh" string (also in libc)

£) The system function is especially
convenient
) Distinctive feature: return to entry point

Chained return-to-libc

) Shellcode often wants a sequence of
actions, eq.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.

©) Can put multiple fake frames on the

stack
® Basic idea present in 1997, further
refinements

Beyond return-to-libc

) Can we do more? Oh, yes.

) Classic academic approach: what's the
most we could ask for?

©) Here: “Turing completeness”
©) How to do it: reading for Thursday




Outline

Epilogue: BCVI Makefile

BCVI Makefile

CFLAGS := -g -Wall -m32 \
-fno-stack-protector \
-z execstack -z norelro

BCVI Makefile

CFLAGS := -g -Wall -m32 \
-fno-stack-protector \
-z execstack -z norelro

£) Standard non-security options

BCVI Makefile

CFLAGS := -g -Wall -m32 \
-fno-stack-protector \
-z execstack -z norelro

) Turn off canaries

BCVI Makefile

CFLAGS := -g -Wall -m32 \
-fno-stack-protector \
-z execstack -z norelro

) Allow execution on stack

BCVI Makefile

CFLAGS := -g -Wall -m32 \
-fno-stack-protector \
-z execstack -z norelro

r) Leave GOT writable




More HA1 VM unprotection

) Not in Makefile: disable ASLR
) Is done system-wide in VM

) For non-VM testing, can use
setarch 1386 -R

More HA1 VM unprotection

©) Not in Makefile: disable /bin/sh privilege
dropping

£ Linux shells differ in whether they'll run
setuid

£) Recompiled dash with security check
removed

Next time

) Return-oriented programming (ROP)
® And counter-defenses

©) Control-flow integrity (CFI)




