
CSci 5271: Introduction to Computer Security

Exercise Set 3 due: November 9th, 2017

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it. You may use any
source you can find to help with this assignment but you must explicitly reference any source you
use besides the lecture notes or textbook. An electronic (plain text or PDF) copy of your solution
should be submitted on the course Moodle by 11:55pm on Thursday, November 9th.

1. Caesar’s block cipher. (30 pts) The Caesar cipher is a historical encryption method based on
advancing letters circularly through the alphabet. To discuss it in a modern context on ASCII, we
can consider it to be a block cipher with an 8-bit block and a 5-bit key k. The encryption function
Ek is defined as:

Ek(b) =


0x41 + ((b− 0x41 + k) mod 26) if 0x41 ≤ b ≤ 0x5A

0x61 + ((b− 0x61 + k) mod 26) if 0x61 ≤ b ≤ 0x7A

b, otherwise

Recall that 0x41 through 0x5A are the ASCII codes for A through Z, and similarly 0x61 through
0x7A are a through z. The inverse operation is just shifting by the same amount in the opposite
direction, so Dk = E26−k (we use the convention that the result of mod is always positive when
the modulus is). ROT-13 corresponds to the special case E13 = D13.

Suppose we want to use this block cipher to encrypt the message ROMA! using the key k = 3. (In
hex, the plaintext is 0x52 0x4F 0x4D 0x41 0x21.) Conveniently with an 8-bit block there is no
need for padding, but we still need to choose a mode of operation. In (a)-(d), give the encryption
of this message, as a sequence of hex bytes, under each of the following modes:

(a) ECB mode (the ancient Roman standard)

(b) CTR mode with an initial counter value of 0x40

(c) CBC mode with an IV of 0x52

(d) OFB mode with an IV of 0x61

(e) CaesarCrypt S.p.A. is an Italian computer security company which builds on their national
heritage to market modern block ciphers that also have an 8-bit block size, but they have taken
the lesson that the original Caesar cipher had too small a key size. Their first flagship product
CCEA1 was a 8-bit block cipher with a 2048-bit key size. Their new successor cryptosystem,
named CCEA2, increases CCEA1’s key size to 4096 bits. CaesarCrypt’s marketing materials
suggest that this yields an astronomical increase in security by a factor of 22048. What do
you think of this security claim: can CCEA2 really be more secure than CCEA1?

(f) In fact there are some general problems that affect any block cipher with a small block size.
Describe a chosen-plaintext attack that would easily break any 8-bit block cipher.

1

2. (Mis-)using message authentication codes. (30 pts) Armed with a copy of Schneier’s
Applied Cryptography from a used bookstore, Sly can’t wait to design his own encrypted thinga-
madoodad protocol. He starts off with a super-secure key exchange protocol that ends with Alice
and Bob sharing secret keys for encryption (Ke) and authentication (Ka). Now he wants to design
a secure symmetric channel using these keys.

(a) Sly decides at first that he wants to use a CBC-MAC based on AES with 128 bit blocks
for integrity. He looks carefully at his key exchange protocol and realizes that an adversary
can interfere to make Alice and Bob end up deciding on different keys. So the first message
sent over by Alice will be τ0 = cbcMACKa(0128) = aesEncryptKa

(0128). (The notation 0n

means n zero bits.) If Bob’s local value doesn’t check out, he aborts, otherwise the channel
is usable. Afterwards, whenever Alice wants to send the message M over the secure channel,
she’ll compute τM ← cbcMACKa(M) and send the pair (M, τM) over the channel; Bob will
check whether τM = cbcMACKa(M) and if so will conclude that Alice said M .

This is a pretty bad idea. Show how to use the values τ0, M and τM to compose a message
to Bob that will convince him Alice meant to say the two-block message (M, τM) instead of
just M . Explain why your message will convince Bob that Alice meant to say (M, τM) rather
than just M . Hint: try writing a recursive definition of CBC-MAC, and use the facts that
for any string A, A⊕A = 0|A| and A⊕ 0|A| = A.

Since τM is just 128 random-looking bits, why is this a big deal?

(b) Sly’s friend Sally notices the same attack on his scheme. She proposes a different method
of authenticating (and encrypting) messages: ignore the key Ka. Instead, to authenticate
and encrypt the message M , first compute H(M) using SHA-256; then encrypt (M,H(M))
together, using AES-CTR encryption. So the message sent on the insecure channel would be
CTR-EncryptKe

(M,H(M)); Bob would decrypt the message using Ke, check that the last 256
bits of the plaintext are the hash of all of the previous bits, and accept the message if they
are.

Show that this is also a bad idea: if Alice ever sends a ciphertext corresponding to the message
M , where Eve knows M , Eve can generate a ciphertext corresponding to any message M ′,
(of the same length as M) that Bob will accept. (For example, if Alice sends the message
“ATTACK AT TEN AM” Eve can drop it and make Bob accept the message “GO BACK
HOME BOB” instead.)

2

3. Protocol (an)droids. (20 pts) Two robots Artoo and C3-2-0 often fly on different starships
and need to alert each other to their presence when their ships come in contact—otherwise they
might accidentally blow each other up! They agree on a shared key K and a MAC algorithm that
outputs 256-bit tags to use in the following protocol.

1. A −→ C: a random 256-bit string NA and MACK(NA).

2. C: on message n, t check that MACK(n) = t, and if so, accept A, otherwise blow up the other
party.

3. C −→ A: MACK(t).

4. A: on message t′ check that t′ = MACK(MACK(NA)). If so, accept C, otherwise blow C up.

The idea here is that A proves it is A by correctly MACing NA (which, if the key is secret, only
A or C could do) and C proves it is C by MACing the MAC. But...

(a) A and C use this protocol for a while and then discover, to their dismay, that sometimes
the evil galactic robo-emperor, E, has been successfully fooling C into believing it is A.
Even supposing that robot-in-the-middle attacks are prevented by speed-of-light limitations
or some other plot contrivance, what is a simple way for E to do this?

(b) A and C decide that one way to prevent the attack is for C to remember every value of NA

used in a previous challenge and reject if one is ever reused. Suppose E sees one authentication
between A and C. How can it fool C into believing it is A as many times afterwards as it
wants?

4. Hashing and Signing. (20 pts) Nearly every digital signature scheme works by first hashing
a message to be signed (with a cryptographic hash function) and then performing some operation
on the hash—so in essence, we are “signing the hash” and not the message. In particular, if Eve
sees Alice’s signature on the message M and can find a message M ′ 6= M so that H(M) = H(M ′),
she can convince people that Alice signed M ′. This is OK, since a good crypto hash function H
will resist finding targeted collisions (second pre-images) like this.

Suppose our signature scheme uses a hash function H with an output length ` that is sufficient
to resist second pre-images but NOT resistant to free collisions (e.g. the hash length is around 100-
120 bits). Then it is possible that if Eve can get Alice to sign one of a pair of colliding messages,
she can later claim that Alice signed the other.

The classic birthday attack works by hashing random messages until two have the same hash.
This could already be a problem in some applications, but you might object that Alice is unlikely
to agree to sign a random message. So let’s think about how to create a collision with more specific
messages.

Suppose that a message is “favorable” if it is something that Alice would sign, for example
“I will pay $5 to McDonald’s for my lunch.” Suppose that a message is “undesirable” if it is
something that Alice would not sign, like “I will pay $500,000 to Eve for her lunch.” Notice that
we can generate 256 different “favorable” messages from the example above, for instance by varying
the number of space characters between words between 1 and 2. Extend this idea to show how to
generate a pair of messages, one favorable and one undesirable, with the same hash. Your attack
should compute about as many hashes as the birthday attack.

Then, describe how Eve completes the attack using the pair she generates to her advatnage.

3

