
Game theory (Ch. 17.5)



Announcements

Writing 2 due Sunday



Repeated games

In repeated games, things are complicated

For example, in the basic PD, there is no
benefit to “lying”

However, if you play this game multiple times,
it would be beneficial to try and cooperate and
stay in the [lie, lie] strategy



Repeated games

One way to do this is the tit-for-tat strategy:
1. Play a cooperative move first turn
2. Play the type of move the opponent last

played every turn after (i.e. answer
competitive moves with a competitive one)

This ensure that no strategy can “take
advantage” of this and it is able to reach
cooperative outcomes



Repeated games

Two “hard” topics (if you are interested) are:

1. We have been talking about how to find
best responses, but it is very hard to take
advantage if an opponent is playing
a sub-optimal strategy

2. How to “learn” or “convince” the opponent
to play cooperatively if there is an option
that benefits both (yet dominated)



Constraint sat. prob. (Ch. 6)



CSP

A constraint satisfaction problem is when there
are a number of variables in a domain with
some restrictions

A consistent assignment of variables has no
violated constraints

A complete assignment of variables has no
unassigned variables

(A solution is complete and consistent)



CSP

Map coloring is a famous CSP problem
Variables: each state/country
Domain: {yellow, blue, green, purple} (here)
Constraints: No adjacent variables same color

Consistent
but partial



CSP

partial and
not consistent

Consistent and
complete



CSP

Another common use of CSP is job scheduling



CSP

Suppose we have 3 jobs: J
1
, J

2
, J

3

If J
1
 takes 20 time units to complete, J

2
 takes 

30 and J
3
 takes 15 but J

1
 must be done before J

3

We can represent this as (and them together):
J

1
 & J

2
: (J

1
 + 20 < J

2
 or J

2
 + 30 < J

1
) 

J
1
 & J

3
: (J

1
+20 < J

3
) 

J
2
 & J

3
: (J

2
 + 30 < J

3
 or J

3
 + 15 < J

2
) 



Types of constraints

A unary constraint is for a single variable
(i.e. J

1
 cannot start before time 5)

Binary constraints are between two variables
(i.e. J

1
 starts before J

2
)

All constraints can be broken down into using
only binary and unary



Types of constraints

K-consistency is:
For any consistent sets size (k-1), there exists
a valid value for any other variable (not in set)

1-consistency: All values in the domain
satisfy the variable's unary constraints

2-consistency: All binary values are in domain
3-consistency: Given consistent 2 variables,
there is a value for a third variable(i.e. if {A,B}
is consistent, then exists C s.t. {A,C}&{B,C})



Types of constraints

Rules: 1. Tasmania cannot be red
2.Neighboring providences cannot share colors

2 Colors:
red
green



Types of constraints

WA = {red, green}
NT = {red, green}
Q = {red, green}
SA = {red, green}
NSW = {red, green}
V = {red, green}
T = {red, green}

Not 1-consistent as we need T to not be red
(i.e. rule #2 eliminates T=red)

WA
NT
SA

Q
NSW

V T



Types of constraints

WA = NT = Q = SA = NSW = V 
= {red, green}
T = {green}

1-consistent now

Also 2-consistent, for example:
Pick WA as “set k-1”, then try to pick NT... 
If WA=green, then we can make NT=red
if WA=red, NT=green (true for all pairs)

WA
NT
SA

Q
NSW

V T



Types of constraints

WA = NT = Q = SA = NSW = V 
= {red, green}
T = {green}

Not 3-consistent!

Pick (WA, SA) and add NT... If NT=green, 
will not work with either: (WA=red,SA=green) 
or (WA=green,SA=red)... NT=red also will not 
work, so NT's domain is empty and not 3-cons.

WA
NT
SA

Q
NSW

V T



Applying constraints

We can repeatedly apply our constraint rules
to shrink the domain of variables (we just 
shrunk NT's domain to nothing)

This reduces the size of the domain, making
it easier to check: 

- If the domain size is zero, there are no
solutions for this problem

- If the domain size is one, this variable must
take on that value (the only one in domain)



Applying constraints

AC-3 checks all 2-consistency constraints:

1. Add all binary constraints to queue
2. Pick a binary constraint (X

i
, Y

j
) from queue

3. If x in domain(X
i
) and no consistent y in 

domain(Y
j
), then remove x from domain(X

i
)

4. If you removed in step 3, update all other
binary constraints involving X

i
 (i.e. (X

i
, X

k
))

5. Goto step 2 until queue empty



Applying constraints

Some problems can be solved by applying 
constraint restrictions (such as sudoku)
(i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we
will need to search to find a solution

Which is Thursday's topic!


