
More on games (Ch. 5.4-5.6)



Announcements

Midterm next week: covers weeks 1-4 
(Chapters 1-4) (might need to prove)

Take the full class period
Open book/notes (can use ebook)
^^ No programing/code, internet searches or

friends
Exam is in this room
You will write your answers on separate piece

paper (I will provide some scratch paper)



Alpha-beta pruning

Previously on CSci 4511...

We talked about how to modify the minimax
algorithm to prune only bad searches 
(i.e. alpha-beta pruning)

This rule of checking your parent's best/worst
with the current value in the child only really
works for two player games...

What about 3 player games?



3-player games

For more than two player games, you need to
provide values at every state for all the players

When it is the player's turn, they get to pick
the action that maximizes their own value
the most

(We will assume each agent is greedy and only
wants to increase its own score... more on this
next time)



3-player games

(The node number shows who is max-ing)

1

2 2 3

3 3 3

1

4,3,3

7,1,3
4,2,4

1,1,8
4,1,5

4,3,3

4,3,34,3,3

4,3,3
4,3,34,3,3



3-player games

How would you do alpha-beta pruning in a 
3-player game?



3-player games

How would you do alpha-beta pruning in a 
3-player game?

TL;DR:  Not easily

(also you cannot prune at all if there is no
range on the values even in a zero sum game)

This is because one player could take a very
low score for the benefit of the other two



Mid-state evaluation

So far we assumed that you have to reach a
terminal state then propagate backwards
(with possibly pruning)

More complex games (Go or Chess) it is hard 
to reach the terminal states as they are so far
down the tree (and large branching factor)

Instead, we will estimate the value minimax
would give without going all the way down



Mid-state evaluation

By using mid-state evaluations (not terminal)
the “best” action can be found quickly

These mid-state evaluations need to be:
1. Based on current state only
2. Fast (and not just a recursive search)
3. Accurate (represents correct win/loss rate)

The quality of your final solution is highly 
correlated to the quality of your evaluation



Mid-state evaluation

For searches, the heuristic only helps you find
the goal faster (but A* will find the best
solution as long as the heuristic is admissible)

There is no concept of “admissible” mid-state
evaluations... and there is almost no guarantee
that you will find the best/optimal solution

For this reason we only apply mid-state evals
to problems that we cannot solve optimally



Mid-state evaluation

A common mid-state evaluation adds features
of the state together

(we did this already for a heuristic...)

We summed the distances to the correct spots
for all numbers

eval(     )=20



Mid-state evaluation

We then minimax (and prune) these mid-state
evaluations as if they were the correct values

You can also weight features (i.e. getting the
top row is more important in 8-puzzle)

A simple method in chess is to assign points 
for each piece: pawn=1, knight=4, queen=9...
then sum over all pieces you have in play



Mid-state evaluation

What assumptions do you make if you use
a weighted sum?



Mid-state evaluation

What assumptions do you make if you use
a weighted sum?

A: The factors are independent (this is often
not the case as the problems are hard)
(non-linear accumulation is common if the
relationships have a large effect)

There is also an issue with how deep should
we look before making an evaluation?



Mid-state evaluation

Using a fixed depth for evaluation is easy to
implement but has shortcomings

A large one is that your evaluation might be
in a state which has a child with a much 
different evaluation than the one evaluated

For this reason, we want to ensure to only
evaluate nodes which have similar scores to
children



Mid-state evaluation

Mid-state evaluations also favor actions that
“put off” bad results (i.e. they like stalling)

In go this would make the computer use up
ko threats rather than give up a dead group

By evaluating only at a limited depth, you 
reward the computer for pushing bad news
beyond the depth (but does not stop the bad
news from eventually happening)



Mid-state evaluation

It is not easy to get around these limitations:
1. Push off bad news
2. How deep to evaluate?

A better mid-state evaluation can help
compensate, but they are hard to find

They are normally found by mimicking what
expert human players do, and there is no
systematic good way to find one



Forward pruning

You can also use mid-state evaluations for
alpha-beta type pruning

However as these evaluations are estimates,
you might prune the optimal answer if the
heuristic is not perfect (which it won't be)

In practice, this prospective pruning is useful
as it allows you to prioritize spending more 
time exploring hopeful parts of the search tree



Forward pruning

You can also save time searching by using
“expert knowledge” about the problem

For example, in both Go and Chess the start
of the game has been very heavily analyzed
over the years

There is no reason to redo this search every
time at the start of the game, instead we can
just look up the “best” response



Random games

If we are playing a “game of chance”, we can
add chance nodes to the search tree

Instead of either player picking max/min,
it takes the expected value of its children

This expected value is then passed up to the
parent node which can choose to min/max
this chance (or not)



Random games

Here is a simple slot machine example:

V(chance) = 

pull don't pull

0chance node

-1 100



Random games

You might need to modify your mid-state
evaluation if you add chance nodes 

Minimax just cares about the largest/smallest,
but expected value is an implicit average:

R is better L is better
1 4 2 2

.9 .9
.1 .1

1 40 2 2

.9 .9
.1 .1



Random games

Some partially observable games (i.e. card 
games) can be searched with card nodes

As there is a high degree of chance, often it is
better to just assume full observability  
(i.e. you know the order of cards in the deck)

Then find which actions perform best over all
possible chance outcomes (i.e. all possible
deck orderings)



Random games

For example in blackjack, you can see what
cards have been played and a few of the
current cards in play

You then compute all possible decks that could
lead to the cards in play (and used cards)

Then find the value of all actions (hit or stand)
averaged over all decks (assumed equal 
chance of possible decks happening)



Random games

If there are too many possibilities for all the
chance outcomes to “average them all”,
you can sample

This means you can search the chance-tree
and just randomly select outcomes (based on
probabilities) for each chance node

If you have a large number of samples, this
should converge to the average



MCTS

This idea of sampling a limited part of the tree
to estimate values is common and powerful

In fact, in monte-carlo tree search there are 
no mid-state evaluations, just samples of
terminal states

This means you do not need to create a good
mid-state evaluation function, but instead you
assume sampling is effective (might not be so)



MCTS

Another benefit of sampling over mid-state
evaluation is that more samples correspond
to better value accuracy (parallel processing)

While the mid-state evaluation is limited by
the quality of your function, which is not easy
to optimize or improve (trial and error)

Note: however, there is diminishing returns
for very large sampling in many problems



MCTS


