I Informed Search (Ch. 3.5-3.6)

I Announcements

Please raise hands when asking questions
I (I will try to be better at looking for them)

Written assignment 1 is posted

- read a research paper

- use latex

(quick tutorial, see assignment pdf for links)

I h(node) needs to be...

Heuristics

However, for A* to be optimal the heuristic

For trees: admissible which means:
h(node) < optimal path from h to goal
(i.e. h(node) is an underestimate of cost)

For graphs: consistent which means:

h(node) < cost(node to child)

h(child)

(i.e. triangle inequality holds true)
(i.e. along any path, f-cost increases)

Heuristics

Consistent heuristics are always admissible
I -Requirement: h(goal) = 0

Admissible heuristics might not be consistent
A* is guaranteed to find optimal solution

if the heuristic is admissible for trees
(consistent for graphs)

Heuristics

In our example, the h(node) was the straight
I line distance from node to goal

This is an underestimate as physical roads
cannot be shorter than this
(it also satisfies the triangle inequality)

Thus this heuristic is admissible
(and consistent)

The straight line cost works for distances
I in the physical world, do any others exist?

Heuristics

One way to make heuristics is to relax the
problem (i.e. simplify in a useful way)

The optimal path cost in the relaxed problem
can be a heuristic for the original problem
(i.e. if we were not constrained to driving on
roads, we could take the straight line path)

Heuristics

Let us look at 8-puzzle heuristics:

START GOAL
2ol B
L7 le] [ads e
3fsfe 7isl

The rules of the game are:

You can swap any square with the blank
Relaxed rules:

1. Teleport any square to any destination

2. Move any square 1 space (overlapping ok)

Heuristics

1. Teleport any square to any destination
Optimal path cost is the number of mismatched
squares (blank included)

2. Move any square 1 space (overlapping ok)
Optimal path cost is Manhattan distance for
each square to goal summed up

Which ones is better? (Note: these optimal
solutions in relaxed need to be computed fast)

Heuristics

h1l = mismatch count
h2 = number to goal difference sum

Search Cost Effective Branching Factor
d IDS A*(hy) A*(hy) IDS A*(hy) A*(hy)
2 10 6 6 245 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 41127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

Heuristics

The real branching factor in the 8-puzzle:
2 if In a corner
3 if on a side
4 if in the center
(Thus larger “8-puzzles” tend to 4)

An effective branching factor finds the
“average” branching factor of a tree
(smaller branching = less searching)

I Heuristics

The effective branching factor is defined as:
N = b* + (b*)% + (b*)3 + ... + (b*)?
... Where:
N = the number of nodes (i.e. size of fringe
+ size of explored if tree search)
b" = effective branching factor (to find)
d = depth of solution

No easy formula, but can approximate:
Nl/(d—l—l) < b* < Nl/d

h2 has a better branching factor than h1, and
I this is not a coincidence...

Heuristics

h2(node) > hl(node) for all nodes, thus we say
h2 dominates hl (and will thus perform better)

If there are multiple non-dominating heuristics:
h1, h2... Then h* = max(h1, h2, ...) will
dominate hl, h2, ... and will also be admissible
/consistent if h1, h2 ... are as well

I If larger is better, why do we not just set
I h(node) = 90017

Heuristics

I If larger is better, why do we not just set
I h(node) = 90017

Heuristics

This would (probably) not be admissible...

If h(node) = 0, then you are doing the
uninformed uniform cost search

If h(node) = optimal_cost(node to goal) then
will ONLY explore nodes on an optimal path

Heuristics

You cannot add two heuristics (h* = h1 + h2),
I unless there is no overlap (i.e. h1 cost is
independent of h2 cost)

For example, in the 8-puzzles:
h3: number of 1, 2, 3, 4 that are misplaced
h4: number of 5, 6, 7, 8 that are misplaced

There is no overlap, and in fact:
h3 + h4 = h1 (as defined earlier)

Heuristics

Cannibals & missionaries problem:
“ ~ Rules:

oo s w | o .- 1, Either bank:
H © OO0 ' — H H .
B e eee - & 0 = M=<c, it m>0
OO e — O
] OCO — % O .
o o @ . oo 2. 2 ppl in boat
o O — @ O O
(& 0] ” N @ ®
o e o o o 3. Start: 3m & 3¢
" 0 e oo 4. Need 1 in

‘ boat to move

Heuristics

What relaxation did you use? (sample)

Make a heuristic for this problem

Is the heuristic admissible/consistent?

I What relaxation did you use? (sample)
I Remove needing person in boat to move

Heuristics

Make a heuristic for this problem
h1l = [num people wrong bank]/2 (boat cap.)

Is the heuristic admissible/consistent?
YES! The point of relaxing guarantees
admissibility!

L.ocal Search (Ch. 4-4.1)

[.ocal search

Before we tried to find a path from the start
I state to a goal state

Now we will look at algorithms that do not
care about the path, just try to find the goal

Some problems, may not have a clear “best”
goal, yet we have some way of evaluating
the state (how “good” is a state)

I [.ocal search

Today we will talk about 4 (more) algorithms:

I 1. Hill climbing
2. Simulated annealing
3. Beam search
4. Genetic algorithms

All of these will only consider neighbors
while looking for a goal

These algorithms will also only consider
I the actions from their current state (neighbors)

[.ocal search

They all have a greedy component, along with
typically a random component

In general, they can efficiently find a good
solution, but have difficulty finding the best

Hill climbing

Remember greedy best-first search'?

1. Pick child with best /X
heuristic

2. Repeat 1...

Hill climbing is only a slight Varlatlon
1. Pick best between: yourself and child
2. Repeat 1...

This avoids the looping issue...

Lugoj

;\'camt
Oradea

Timisoara

Zerind

I This actually works surprisingly well, if getting
I “close” to the goal is sufficient (and actions
are not too restrictive)
Newton's method:

Hill climbing

I:-_}] i __—P"'-----:-:

Hill climbing

Straight-line distance
to Bucharest

Arad 366

) Bucharest 0

. Zerind Craiova 160
Dobreta 242

Arad [Eforie 161
Fagaras 178

Giurgiu 77

118] Vaslui Hirsova 151
Iasi 226

Timisoara Lugoj 244
Mehadia 241

Neamt 234

Lugo] o Oradea 380

% Hirsova Pi.tESti . 78

Mehadia Urziceni Rimnicu Vilcea 193

75 86 Sibiu 253

Bucharest Timisoara 329

Dobreta Urziceni 80

Craiova Eforie Vaslui 199

M| Giurgiu Zerind 374

I For the 8-puzzles we had 2 (consistent)
I heuristics:

Hill climbing

h1 - number of mismatched pieces
h2 - Y Manhattan distance from number's

current to goal position |
1 3

Let's try hill climbing this 8 ¢

problem!

-~
¢

Hill climbing

lacal maximum

Can get stuck in: .
I - Local maximum /Y :
A #) 2
- Plateu/shoulder 7 .~ 7Ty
// oy E N\

/K{j \O “5;
Local maximum will e sev o
have a range of

attraction around it

"flat™ local maximum

Can get an infinite i
loop in a plateu if not careful (step count)

Hill climbing

To avoid these pitfalls, most local searches
I incorporate some form of randomness

Hill search variants:
Stochastic hill climbing - choose random move
and take that if better than current

Random-restart hill search - run hill search
until maximum found (or looping), then
start at another random spot and repeat

Simulated annealing

The idea behind simulated annealing is we
I act more random at the start (to “explore”),
then take greedy choices later
https://www.youtube.com/watch?v=qfD3cmQbn28
An analogy might be a hard boiled egg:
1. To crack the shell you hit rather hard
(not too hard!)
2. You then hit lightly to create a
cracked area around first
3. Carefully peal the rest

Sl = DOUID =

Simulated annealing

The process is:

Pick random action and evaluation result
If result better than current, take it

If result worse accept probabilistically
Decrease acceptance chance in step 3
Repeat...

(see: SAacceptance.cpp)
Specifically, we track some “temperature” T:
3. Accept with probability: ¢==**F"""
4. Decrease T (linear? hard to find best...)

Simulated annealing

I Let's try SA on 8-puzzle:

I 1 3

Simulated annealing

Let's try SA on 8-puzzle:

I This example did not work|| s ¢ 2
well, but probably due to
the temperature handling

We want the temperature to be fairly high at
the start (to move around the graph)

The hard part is slowly decreasing it over time

I SA does work well on the traveling salesperson
I problem

Simulated annealing

(see: tsp.zip)

I I } I

Beam search is similar to hill climbing, except
I we track multiple states simultaneously

[.ocal beam search

Initialize: start with K random nodes

1. Find all children of the K nodes

2. Select best K children from whole pool
3. Repeat...

Unlike previous approaches, this uses more
memory to better search “hopeful” options

[.ocal beam search

However, the basic version of beam search
I can get stuck in local maximum as well

To help avoid this, stochastic beam search
picks children with probability relative to
their values

This is different that hill climbing with K
restarts as better options get more
consideration than worse ones

[.ocal beam search

heuristic functian

(@)

s
state space

Genetic algorithms

Nice examples of GAs:
//rednuht.org/genetic_cars_2/
://boxcar2d.com/

Donate

Save Population

New Population

Enter any string

Floor: | Ffixed =

Elite clones: 1 =
generation 94
cars alive: 13

Watch Leader

B g feaRelles o S

W /\j\,\- i AVAVJN\A"/VW
NP AN

View top replay
Top Scores:
#1: 212.25 d:206.16 h:-11.8/10.66m (gen 66)
#2: 211.61 d:206.83 h:-12.05/10.46m (gen 43)
#3: 203.18 d:197.94 h:-9.09/10.37m (gen 7)
#4: 182.57 d:176.11 h:0/10.83m (gen 84)
#5: 180.08 d:174.49 h:0/10.95m (gen 39)
#6: 176.99 d:172.86 h:0/11.14m (gen 26)
#7: 169.33 d:162.43 h:0/10.83m (gen 85)
#8: 168.81 d:162.43 h:0/10.56m (gen 79)
#9: 168.6 d:163.12 h:0/11.19m (gen 32)
#10: 168.49 d:164.13 h:0/11.59m (gen 17)

=B e S B = = RO D R WSS

Restore Saved Population
Create new world with seed:

Mutation rate: | 5%
Mutation size: | 100% 3

Gravity: | Earth (3.81)

distance: 36.79 meters
height: 2.67 meters

BoxCar 2D

Home | Designer | Best Cars | Forum | News | FAQ | The Algorithm | Versions | Contact

Computation Intelligence Car Evolution Using Box2D Physics (v3.2)

60 fps average Hide Input Seed / Choose Terrain | 139

Physics step: 1 ms (833 fps

18 MB used Generation: 4 Max Score: 139.5
(seCoew Al |iGopy. Selected)|

Car | Score | Time 69

0 | 1395 | 024

1 B4.4 010

2 |38 0:01

3 |oa 0:02

4 |34 002

5 18 000

6 |10 0:05

7 |32 0:02 =

8 222 010

9 |16 0:03

i

Copy Current
Copy Besi

Torque: 152
romener - | [¢ 5

mutation rate g

max wheels whe

NMaeacion a i ar

Genetic algorithms

Genetic algorithms are based on how life has
I evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children
1a. Select 2 random parents
1b. Mutate/crossover
2. Test fitness of children to see if they survive
3. Repeat until convergence

Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover Mutation
A B

Crossover: u_»-z-

Split the parent's information into two parts,

then take part 1 from parent A and 2 from B
Mutation:

Change a random part to a random value

http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Genetic algorithms are very good at optimizing
I the fitness evaluation function

While there are a fair amount of parameters to
choose from, they are not very sensitive

The downside is that it typically takes a while
to converge to the optimal solution (i.e. many
generations have to be created)

