
Informed Search (Ch. 3.5-3.6)



Announcements

Please raise hands when asking questions
(I will try to be better at looking for them)

Written assignment 1 is posted
- read a research paper
- use latex
(quick tutorial, see assignment pdf for links)



Heuristics

However, for A* to be optimal the heuristic
h(node) needs to be...

For trees: admissible which means: 
h(node) < optimal path from h to goal
(i.e. h(node) is an underestimate of cost)

For graphs: consistent which means:
h(node) < cost(node to child) + h(child)
(i.e. triangle inequality holds true)
(i.e. along any path, f-cost increases)



Heuristics

Consistent heuristics are always admissible
-Requirement: h(goal) = 0

Admissible heuristics might not be consistent

A* is guaranteed to find optimal solution 
if the heuristic is admissible for trees
(consistent for graphs)



Heuristics

In our example, the h(node) was the straight
line distance from node to goal

This is an underestimate as physical roads 
cannot be shorter than this
(it also satisfies the triangle inequality)

Thus this heuristic is admissible 
(and consistent)



Heuristics

The straight line cost works for distances
in the physical world, do any others exist?

One way to make heuristics is to relax the
problem (i.e. simplify in a useful way)

The optimal path cost in the relaxed problem
can be a heuristic for the original problem
(i.e. if we were not constrained to driving on
roads, we could take the straight line path)



Heuristics

Let us look at 8-puzzle heuristics:

The rules of the game are:
You can swap any square with the blank

Relaxed rules:
1. Teleport any square to any destination
2. Move any square 1 space (overlapping ok)



Heuristics

1. Teleport any square to any destination
Optimal path cost is the number of mismatched 
squares (blank included)

2. Move any square 1 space (overlapping ok)
Optimal path cost is Manhattan distance for
each square to goal summed up

Which ones is better? (Note: these optimal
solutions in relaxed need to be computed fast)



Heuristics

h1 = mismatch count
h2 = number to goal difference sum



Heuristics

The real branching factor in the 8-puzzle:
2 if in a corner
3 if on a side
4 if in the center
(Thus larger “8-puzzles” tend to 4)

An effective branching factor finds the
“average” branching factor of a tree
(smaller branching = less searching)



Heuristics

The effective branching factor is defined as:
 
... where: 

N = the number of nodes (i.e. size of fringe
+ size of explored if tree search)
b* = effective branching factor (to find)
d = depth of solution

No easy formula, but can approximate:



Heuristics

h2 has a better branching factor than h1, and 
this is not a coincidence...

h2(node) > h1(node) for all nodes, thus we say
h2 dominates h1 (and will thus perform better)

If there are multiple non-dominating heuristics:
h1, h2... Then h* = max(h1, h2, ...) will
dominate h1, h2, ... and will also be admissible
/consistent if h1, h2 ... are as well 



Heuristics

If larger is better, why do we not just set
h(node) = 9001?



Heuristics

If larger is better, why do we not just set
h(node) = 9001?

This would (probably) not be admissible...

If h(node) = 0, then you are doing the 
uninformed uniform cost search

If h(node) = optimal_cost(node to goal) then
will ONLY explore nodes on an optimal path



Heuristics

You cannot add two heuristics (h* = h1 + h2),
unless there is no overlap (i.e. h1 cost is 
independent of h2 cost)

For example, in the 8-puzzles:
h3: number of 1, 2, 3, 4 that are misplaced
h4: number of 5, 6, 7, 8 that are misplaced

There is no overlap, and in fact: 
h3 + h4 = h1 (as defined earlier)



Heuristics

Cannibals & missionaries problem:
Rules:

1. Either bank:
m=<c, if m>0

2. 2 ppl in boat

3. Start: 3m & 3c
4. Need 1 in
boat to moveGoal:fewest steps to swap banks

initial



Heuristics

What relaxation did you use? (sample)

Make a heuristic for this problem

Is the heuristic admissible/consistent?



Heuristics

What relaxation did you use? (sample)
Remove needing person in boat to move

Make a heuristic for this problem
h1 = [num people wrong bank]/2 (boat cap.)

Is the heuristic admissible/consistent?
YES! The point of relaxing guarantees 
admissibility!



Local Search (Ch. 4-4.1)



Local search

Before we tried to find a path from the start
state to a goal state

Now we will look at algorithms that do not
care about the path, just try to find the goal

Some problems, may not have a clear “best”
goal, yet we have some way of evaluating
the state (how “good” is a state)



Local search

Today we will talk about 4 (more) algorithms:

1.  Hill climbing
2.  Simulated annealing
3.  Beam search
4.  Genetic algorithms

All of these will only consider neighbors
while looking for a goal



Local search

These algorithms will also only consider 
the actions from their current state (neighbors)

They all have a greedy component, along with
typically a random component

In general, they can efficiently find a good
solution, but have difficulty finding the best 



Hill climbing

Remember greedy best-first search?
1. Pick child with best

heuristic
2. Repeat 1...

Hill climbing is only a slight variation:
1. Pick best between: yourself and child
2. Repeat 1...

This avoids the looping issue...



Hill climbing

This actually works surprisingly well, if getting
“close” to the goal is sufficient (and actions
are not too restrictive)

Newton's method:



Hill climbing



Hill climbing

For the 8-puzzles we had 2 (consistent)
heuristics:

h1 - number of mismatched pieces
h2 - ∑ Manhattan distance from number's

current to goal position

Let's try hill climbing this
problem!



Hill climbing

Can get stuck in:
- Local maximum
- Plateu/shoulder

Local maximum will
have a range of 
attraction around it

Can get an infinite
loop in a plateu if not careful (step count) 



Hill climbing

To avoid these pitfalls, most local searches
incorporate some form of randomness

Hill search variants:
Stochastic hill climbing - choose random move

and take that if better than current

Random-restart hill search - run hill search
until maximum found (or looping), then 
start at another random spot and repeat



Simulated annealing

The idea behind simulated annealing is we
act more random at the start (to “explore”),
then take greedy choices later

An analogy might be a hard boiled egg:
1. To crack the shell you hit rather hard 

(not too hard!)
2. You then hit lightly to create a

cracked area around first
3. Carefully peal the rest

https://www.youtube.com/watch?v=qfD3cmQbn28



Simulated annealing

The process is:
1.  Pick random action and evaluation result
2.  If result better than current, take it
3.  If result worse accept probabilistically
4.  Decrease acceptance chance in step 3
5.  Repeat...

(see: SAacceptance.cpp)
Specifically, we track some “temperature” T:
3.  Accept with probability: 
4.  Decrease T (linear? hard to find best...)



Simulated annealing

Let's try SA on 8-puzzle:



Simulated annealing

Let's try SA on 8-puzzle:

This example did not work
well, but probably due to
the temperature handling

We want the temperature to be fairly high at
the start (to move around the graph)

The hard part is slowly decreasing it over time



Simulated annealing

SA does work well on the traveling salesperson
problem

(see: tsp.zip) 



Local beam search

Beam search is similar to hill climbing, except
we track multiple states simultaneously

Initialize: start with K random nodes
1.  Find all children of the K nodes
2.  Select best K children from whole pool
3.  Repeat...

Unlike previous approaches, this uses more
memory to better search “hopeful” options



Local beam search

However, the basic version of beam search
can get stuck in local maximum as well

To help avoid this, stochastic beam search
picks children with probability relative to
their values

This is different that hill climbing with K
restarts as better options get more 
consideration than worse ones



Local beam search



Genetic algorithms

Nice examples of GAs:
http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/



Genetic algorithms

Genetic algorithms are based on how life has
evolved over time

They (in general) have 3 (or 5) parts:
1.  Select/generate children

1a. Select 2 random parents
1b. Mutate/crossover

2.  Test fitness of children to see if they survive
3. Repeat until convergence 



Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover:
Split the parent's information into two parts,
then take part 1 from parent A and 2 from B

Mutation:
Change a random part to a random value

http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/


Genetic algorithms

Genetic algorithms are very good at optimizing
the fitness evaluation function

While there are a fair amount of parameters to
choose from, they are not very sensitive

The downside is that it typically takes a while
to converge to the optimal solution (i.e. many
generations have to be created)


