
Uninformed Search (Ch. 3-3.4)

1

Announcements

Will make homework this weekend (~4 days)
due next weekend (~13 days)

2

What did we do last time?

Take away messages:
Lecture 1: Class schedule (ended early)

Lecture 2: AI in general (and where we fit)

Lecture 3(now): Clarify (hopefully) this class
and where it fits into broader AI

Also, start discussing algorithms!

33

Environment classification

Pick a game/hobby/sport/pastime/whatever
and describe both the PEAS and whether the
environment/agent is:
1. Fully vs. partially observable (how much see?)

2. Single vs. multi-agent (need to consider others?)

3. Deterministic vs. stochastic (know outcome of action?)

4. Episodic vs. sequential (independent vs. dependent)

5. Static vs. dynamic (have time to think?)
6. Discrete vs. continuous (how finely measure?)
7. Known vs. unknown (know the rules?)

4

Agent models

Can also classify agents into four categories:

1. Simple reflex
2. Model-based reflex
3. Goal based
4. Utility based

Top is typically simpler and harder to adapt
to similar problems, while bottom is more
general representations

5

Agent models

A simple reflex agents acts only on the most
recent part of the percept and not the whole
history

Our vacuum agent is of this type, as it only
looks at the current state and not any previous

These can be generalized as:
“if state = ____ then do action ____”
(often can fail or loop infinitely)

6

Agent models

A model-based reflex agent needs to have a
representation of the environment in memory
(called internal state)

This internal state is updated with each
observation and then dictates actions

The degree that the environment is modeled
is up to the agent/designer (a single bit vs.
a full representation)

7

Agent models

This internal state should be from the agent's
perspective, not a global perspective
(as same global state might have different
actions)

Consider these pictures of a maze:
Which way to go? Pic 1 Pic 2

9

Agent models

The global perspective is the same, but the
agents could have different goals (stars)

Goals are not global information

Pic 1 Pic 2

10

Agent models

For the vacuum agent if the dirt does not
reappear, then we do not want to keep moving

The simple reflex agent program cannot do
this, so we would have to have some memory
(or model)

This could be as simple as a flag indicating
whether or not we have checked the other state

11

Agent models

The goal based agent is more general than
the model-based agent

In addition to the environment model, it has a
goal indicating a desired configuration

Abstracting to a goals generalizes your method
to different (similar) problems
(for example, a model-based agent could solve
one maze, but a goal can solve any maze)

12

Agent models

A utility based agent maps the sequence of
states (or actions) to a real value

Goals can describe general terms as “success”
or “failure”, but there is no degree of success

In the maze example, a goal based agent can
find the exit. But a utility based agent can find
the shortest path to the exit

13

Agent models

What is the agent model of our vacuum?

14

 if [Dirty], return [Suck]
if at [state A], return [move right]
if at [state B], return [move left]

Agent models

What is the agent model of particles?

Think of a way to improve the agent and
describe what model it is now

15

Agent learning

For many complicated problems (facial
recognition, high degree of freedom robot
movement), it would be too hard to explicitly
tell the agent what to do

Instead, we build a framework to learn the
problem and let the agent decide what to do

This is less work and allows the agent to adapt
if the environment changes

16

Agent learning

There are four main components to learning:
1. Critic = evaluates how well the agent is

doing and whether it needs to change actions
(similar to performance measure)

2. Learning element = incorporate new
information to improve agent

3. Performance element = selects action agent
will do (exploit known best solution)

4. Problem generator = find new solutions
(explore problem space for better solution)

17

State structure

States can be generalized into three categories:

1. Atomic (Ch. 3-5, 15, 17)
2. Factored (Ch. 6-7, 10-11, 13-16, 18, 20-21)
3. Structured (Ch. 8-9, 12, 14, 19, 22-23)
(Top are simpler, bottom are more general)

Occam's razor = if two results are identical,
use the simpler approach

18

State structure

An atomic state has no sub-parts and acts
as a simple unique identifier

An example is an elevator:
Elevator = agent (actions = up/down)
Floor = state

In this example, when someone requests the
elevator on floor 7, the only information the
agent has is what floor it currently is on

19

State structure

Another example of an atomic representation
is simple path finding:
If we start (here) in Amundson B75, how
would you get to Keller's CS office?

Am. B75 -> Hallway1 -> Tunnel -> Hallway2
-> Elevator -> Hallway3 -> CS office

The words above hold no special meaning
other than differentiating from each other

20

State structure

A factored state has a fixed number of
variables/attributes associated with it

Our simple vacuum example is factored, as
each state has an id (A or B) along with a
“dirty” property

In particles, each state has a set of red balls
with locations along with the blue ball location

21

State structure

Structured states simply describe objects and
their relationship to others

Suppose we have 3 blocks: A, B and C
We could describe: A on top of B, C next to B

A factored representation would have to
enumerate all possible configurations of
A, B and C to be as representative

22

State structure

We will start using structured approaches
when we deal with logic:

Summer implies Warm
Warm implies T-Shirt

The current state might be:
!Summer (¬Summer)
but the states have intrinsic relations between
each other (not just actions)

23

This course

Typically in this course we will look at:
1. Fully observable
2. Single agent (little multi-agent)
3. Deterministic (little stochastic at end)
4. Sequential
5. Static
6. Discrete
7. Known (little unknown at end, i.e. learning)

With either goal or utility models

31

Search

Goal based agents need to search to find a
path from their start to the goal (a path is a
sequence of actions, not states)

For now we consider problem solving agents
who search on atomically structured spaces

Today we will focus on uninformed searches,
which only know cost between states but no
other extra information

32

Search

In the vacuum example, the states and actions
are obvious and simple

In more complex environments, we have a
choice of how to abstract the problem into
simple (yet expressive) states and actions

The solution to the abstracted problem should
be able to serve as the basis of a more detailed
problem (i.e. fit the detailed solution inside)

33

Search

Example: Google maps gives direction by
telling you a sequence of roads and does not
dictate speed, stop signs/lights, road lane

34

Search

In deterministic environments the search
solution is a single sequence (list of actions)

Stochastic environments need multiple
sequences to account for all possible outcomes
of actions

It can be costly to keep track of all of these
and might be better to keep the most likely
and search again if you are off the sequences

35

Search

There are 5 parts to search:
1. Initial state
2. Actions possible at each state
3. Transition model (result of each action)
4. Goal test (are we there yet?)
5. Path costs/weights (not stored in states)

(related to performance measure)

In search we normally fully see the problem
and the initial state and compute all actions

36

Small examples

Here is our vacuum world again:

2. For all states, we have actions: L, R or S
3. Transition model = black arrows
5. Path cost = ??? (from performance measure)

1. initial

4. goals

37

Small examples

8-Puzzle
1. (semi) Random
2. All states: U,D,L,R
4. As shown here
5. Path cost = 1 (move count)
3. Transition model (example):

Result(,D) =

(see: https://www.youtube.com/watch?v=DfVjTkzk2Ig)

38

Small examples

8-Puzzle is NP complete so to find the best
solution, we must brute force

3x3 board = = 181,440 states

4x4 board = 1.3 trillion states
Solution time: milliseconds

5x5 board = 1025 states
Solution time: hours

39

Small examples

8-Queens: how to fit 8 queens on a 8x8 board
so no 2 queens can capture each other

Two ways to model this:
Incremental = each action is to

add a queen to the board
(1.8 x 1014 states)

Complete state formulation = all 8 queens start
on board, action = move a queen
(2057 states)

40

Real world examples

Directions/traveling (land or air)

Model choices: only have interstates?
Add smaller roads, with increased cost?
(pointless if they are never taken)

41

Real world examples

Touring problem: visit each place at least once,
end up at starting location

Goal: Minimize distance traveled

42

Real world examples

Traveling salesperson problem (TSP): Visit
each location exactly once and return to start

Goal: Minimize distance traveled

43

Search algorithm

To search, we will build a tree with the root as
the initial state

Any problems with this?

44

Search algorithm
45

Search algorithm

8-queens can actually be generalized to the
question:
Can you fit n queens on a z by z board?

Except for a couple of small size boards, you
can fit z queens on a z by z board

This can be done fairly easily with recursion

(See: nqueens.cpp)

46

https://www.youtube.com/watch?v=DfVjTkzk2Ig

Search algorithm

We can remove visiting states multiple times
by doing this:

But this is still not necessarily all that great...

47

Search algorithm

Next we will introduce and compare some
tree search algorithms

These all assume nodes have 4 properties:
1. The current state
2. Their parent state (and action for transition)
3. Children from this node (result of actions)
4. Cost to reach this node (from root)

48

Search algorithm

When we find a goal state, we can back track
via the parent to get the sequence

To keep track of the unexplored nodes, we will
use a queue (of various types)

The explored set is probably best as a hash
table for quick lookup (have to ensure similar
states reached via alternative paths are the
same in the has, can be done by sorting)

49

Search algorithm

The search algorithms metrics/criteria:
1. Completeness (does it terminate with a
valid solution)
2. Optimality (is the answer the best solution)
3. Time (in big-O notation)
4. Space (big-O)

b = maximum branching factor
d = minimum depth of a goal
m = maximum length of any path

50

Uninformed search

Today, we will focus on uninformed search,
which only have the node information (4 parts)
(the costs are given and cannot be computed)

Next time we will continue with informed
searches that assume they have access to
additional structures of the problem (i.e.
if costs were distances between cities, you
could also compute the distance “as the bird
flies”)

51

Breadth first search

Breadth first search checks all states which
are reached with the fewest actions first

(i.e. will check all
states that can be
reached by a single
action from the start,
next all states that
can be reached by two
actions, then three...)

52

Breadth first search

(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288VLs)

53

Breadth first search

BFS can be implemented by using a simple
FIFO (first in, first out) queue to track the
fringe/frontier/unexplored nodes

Metrics for BFS:
Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)
Time complexity = O(bd)
Space complexity = O(bd)

54

Breadth first search

Exponential problems are not very fun, as seen
in this picture:

55

Uniform-cost search

Uniform-cost search also does a queue, but
uses a priority queue based on the cost
(the lowest cost node is chosen to be explored)

56

Uniform-cost search

The only modification is when exploring a
node we cannot disregard it if it has already
been explored by another node

We might have found a shorter path and thus
need to update the cost on that node

We also do not terminate when we find a goal,
but instead when the goal has the lowest
cost in the queue.

57

Uniform-cost search

UCS is..

1. Complete (if costs strictly greater than 0)
2. Optimal

However....
3&4. Time complexity = space complexity

= O(b1+C*/min(path cost)), where C* cost of
optimal solution (much worse than BFS)

58

Depth first search

DFS is same as BFS except with a FILO (or
LIFO) instead of a FIFO queue

59

Depth first search

Metrics:
1. Might not terminate (not correct) (e.g. in

vacuum world, if first expand is action L)
2. Non-optimal (just... no)
3. Time complexity = O(bd)
4. Space complexity = O(b*d)

Only way this is better than BFS is the
space complexity...

60

Depth limited search

DFS by itself is not great, but it has two (very)
useful modifications

Depth limited search runs normal DFS, but if
it is at a specified depth limit, you cannot have
children (i.e. take another action)

Typically with a little more knowledge, you
can create a reasonable limit and makes the
algorithm correct

61

https://www.youtube.com/watch?v=5UfMU9TsoEM
https://www.youtube.com/watch?v=nI0dT288VLs

Depth limited search

However, if you pick the depth limit before d,
you will not find a solution (not correct, but
will terminate)

62

Iterative deepening DFS

Probably the most useful uninformed search
is iterative deepening DFS

This search performs depth limited search with
maximum depth 1, then maximum depth 2,
then 3... until it finds a solution

63

Iterative deepening DFS
64

Iterative deepening DFS

The first few states do get re-checked multiple
times in IDS, however it is not too many

When you find the solution at depth d, depth 1
is expanded d times (at most b of them)

The second depth are expanded d-1 times
(at most b2 of them)

Thus

65

Iterative deepening DFS

Metrics:
1. Complete
2. Non-optimal (unless uniform cost)
3. O(bd)
4. O(bd)

Thus IDS is better in every way than BFS
(asymptotically)

Best uninformed we will talk about

66

Bidirectional search

Bidirectional search starts from both the goal
and start (using BFS) until the trees meet

This is better as 2*(bd/2) < bd

(the space is much worse than IDS, so only
applicable to small problems)

67

Uninformed search
68

