
Neural networks (Ch. 12)

Back-propagation

The neural network is as good as it's structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced

Back-propagation

To do this blaming, we have to find how much
each weight influenced the final answer

Steps:
1. Find total error
2. Find derivative of error w.r.t. weights
3. Penalize each weight by an amount

proportional to this derivative

Back-propagation

Consider this example: 4 nodes, 2 layers

1

2 4

3

in
2

in
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

1

This node as a constant bias of 1

out
1

out
2

b
1 b

2

Neural network: feed-forward

One commonly used function is the sigmoid:

Back-propagation

1

2 4

3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1

Node 1: 0.15*0.05 + 0.2*0.1 +0.35 as input
thus it outputs (all edges) S(0.3775)=0.59327

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

1

2 4

3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1
Eventually we get: out

1
= 0.7513, out

2
= 0.7729

Suppose wanted: out
1
= 0.01, out

2
= 0.99

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

We will define the error as:
(you will see why shortly)

Suppose we want to find how much w
5
 is

to blame for our incorrectness

We then need to find:
Apply the chain rule:

Back-propagation

Back-propagation

In a picture we did this:

Now that we know w5 is 0.08217 part
responsible, we update the weight by:
w

5
 ←w

5
 - α * 0.08217 = 0.3589 (from 0.4)

α is learning rate, set to 0.5

Back-propagation

Updating this w
5
 to w

8
 gives:

w
5
 = 0.3589

w
6
 = 0.4067

w
7
 = 0.5113

w
8
 = 0.5614

For other weights, you need to consider all
possible ways in which they contribute

Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)

Back-propagation

Specifically for w
1
 you would get:

Next we have to break down the top equation...

Back-propagation

Back-propagation

Similarly for Error
2
 we get:

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update

NN examples

Despite this learning shortcoming, NN are
useful in a wide range of applications:

Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)

NN examples
Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=xcIBoPuNIiw

https://www.youtube.com/watch?v=0Str0Rdkxxo

https://www.youtube.com/watch?v=l2_CPB0uBkc

https://www.youtube.com/watch?v=0VTI1BBLydE

NN examples

AlphaGo has been in the news recently, and
is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

Other random topics

K-means clustering on points is finding
K “central locations” that reduce the distance
of each point to the nearest “central location”
(summed over all points)

K=3

https://www.youtube.com/watch?v=umRdt3zGgpU
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0Str0Rdkxxo
https://www.youtube.com/watch?v=l2_CPB0uBkc
https://www.youtube.com/watch?v=0VTI1BBLydE

Other random topics

For examples like the previous one, it is easy
to find which points should be “grouped
together”

Once you have a group of points, you can
mathematically find the best “central location”

(“center of mass” with equally massive points)

Other random topics

Suppose you wanted to find the best spot
to put 5 “central locations” here:

Other random topics

Suppose you wanted to find the best spot
to put 5 “central locations” here:

dense

dense

dense

dense??

dense?far from any center?

Other random topics

Turns out you can do this the other way around
as well...

If you have the “central locations” (x,y)
coordinates, you can find which location all
points should go to (minimum distance)

Other random topics

We have a problem:

1. If we knew point groupings, we could find
the best central locations

2. If we knew central locations positions, we
could find point groupings

Other random topics

One common way to solve this issue when you
have multiple unknowns that depend on each
other is to simply guess, then try to optimize

So, initially just make random groupings

Then find the best central locations base off
of the groupings

Then find the best groupings... and repeat

Other random topics

If you set up the problem correctly (and have
a “well behaved” metric), this will converge

In fact, you can do this even if you have
more than two unknowns

Just make one variable while fixing all others
and optimize that one
... then pick a new variable to “optimize”

Other random topics

This technique actually works in a large range
of settings:

K-means clustering (this)
Bayesian networks (probabilistic reasoning)
Markov Decision Processes (policy selection)
Expectation–Maximization (parameter

optimization)

