
Planning (Ch. 10)



Forward search

Last time...
Initial: At(Truck, UPSD) ^ Package(UPSD, P1)

^ Package(UPSD, P2) ^ Mobile(Truck)
Goal: Package(H1, P1) ^ Package(H2, P2)







Find match
m/Truck
x/P1, y/UPSD



Apply effects















Forward search

While the solution might seem obvious to us,
the search space is (surprisingly) quite large

The brute force way (forward search) simply
looks at all valid actions from the current state

We can then search it in using BFS (or iterative
deepening) to find fewest action cost goal



Forward search

At(USPD)

At(H1)

At(H2)

At(USPD) ^ Package(P1)

At(USPD)
GoTo(Truck, USPD)

Load(USPD, P1, USPD)

...

...

At(H1)

At(H2)

...

can ignore

At(USPD)

...

At(USPD)



Forward search

Actions: 3 (2 unique ones, as Deliver = Load)
Objects: 6 (Truck, USPD, H1, H2, P1, P2)
Min moves to goal: 6 (L, L, G, D, G, D)

Despite this problem being simplistic,
the branching factor is about 4 to 5 
(even with removing redundant actions)

This means we could search around 10,000
states before we found the goal



Forward search

This search is actually much more than the
number of states due to redundant paths

Package() can be: UPSD, Truck, H1, H2
At() can be: USPD, Truck, H1, H2, P1, P2

There are 2 packages for Package()
There is 1 truck for Truck()

So total states = 4^2 * 6 = 96



Backward search

Backward search is also similar to FO's
backward search

Start at goal and do actions in reverse (swap
effect and precondition), except substitute:

Example:
Goal = At(Home)
Initial = At(Class)
Unify: {x/Home,

y/Class} ... done



Backward search

If applying the substitution is more difficult,
you can convert by: 
1. Apply effect to precondition
2. Negate effects, add original precondition

Redundant 

Remove



Unify:
m/Truck,
x/P2, y/H2



No change



Try to continue from here!



Heuristics for planning

Backwards search has a smaller branching 
factor in general, but it is hard to use heuristics

This is due to it looking at sets of states, and
not a single state for the next action

For this reason, it is often better to apply
a good heuristic to the dumb forward search 



Heuristics for planning

Reformulate our grilling problem as actions:

If our goal is just “Sandwitch(Bread)”,
backtracking search would try to solve:

... but since “x” is still a variable, this
represents a set of states rather than one



Heuristics for planning

In “search” we had no generalize-able
heuristics as each problem could be different

Heuristics in planning are found the same way, 
we (1) relax the problem (2) solve it optimally

Two generic ways to always do this are:
1. Add more actions
2. Reduce number of states



Heuristics: add actions

Multiple ways to add actions (to goal faster):

1. Ignore preconditions completely - also
ignore any effects not related to goals

This becomes set-covering problem, which
is NP-hard but has P approximations

2. Ignore any deletions in effects (i.e. anything
with    ), also NP-hard but P approximation



Ignore preconditions

By simply removing preconditions, we allow
every action to happen at every state



Ignore preconditions

More importantly for the solution is how the
Delivery action changes

The USPD can now just directly
deliver to houses, so goal is:
Deliver(USPD, P1, H1) and then
Deliver(USPD, P2, H2)



Ignore negative effects

To use this heuristic, the goal cannot have
negative functions/literals (i.e.                         )

This can always be rewritten to something else
(for above                                                          )



Ignore negative effects

For the UPS delivery example, it does not
help us find a solution faster (min is 6 still)

However, there are many more solutions
as every action “copies” instead of “moves”

For example, a solution could be:
Move, Move, Load, Load, Deliver, Deliver

This is possible as truck exists at all 3 spots!



After 2 moves... then load...



After 2 moves... then load...



Heuristics: group states

Group similar states together into “super
states” and solve the problem within 
“super states” separately (divide & conquer)

A admissible but bad heuristic would be
the maximum of all “super states” individual
solutions (but this is often poor)

A possibly non-admissible would be the sum
of all “super states” (need independence)



Heuristics: group states

These “super states” can created in many ways

1. Delete relations/fluents (e.g. no more “At”)
2. Merge objects/literals (e.g. merge UPSD 

and Truck)

You then need to solve two problems:
1. Between the abstract “super states”
2. Within each “super state”



Heuristics: group states

Consider if there were 3 houses, but only
two needed packages

We could remove all “At”s for this third house,
as we can easily abstract it away

In this case the “super state” solution is
the actual solution as there is no need to
add back in a third house



Heuristics: group states

For example, if we were instead delivering
3 packages, 1 to H1 and 2 to H2...

We combine the two packages for H2 into a 
single “super package” with only one load and 
deliver (overall “super state” solution)

We then can simply see that each load/deliver
corresponds to two individual loads/delivers
(within super state solution)


