
Planning (Ch. 10)

Planning

Planning is doing a sequence of actions to
achieve one or more goals

This differs from search in that there are often
multiple objectives that must be done

You can always reduce a planning problem
to a search problem, but this is quite often
very expensive

Search

Search: How to get from point A to point B
quickly? (Only considering traveling)

Planning

Planning: multiple tasks/subtasks need to be
done and in what order? (pack, travel, unpack)

Search vs planning

Searching: finding a single goal
Planning: must complete multiple tasks on the

way to an ultimate goal
Search: Plan:

Planning: definitions

The book uses Planning Domain Definition
Language (PDDL) to represent states/actions

PDDL is very similar to first order logic
in terms of notation (states are now similar
to what our knowledge base was)

The large difference is that we need to define
actions to move between states

Planning: assumptions

We make the same 3 assumptions as FO logic:
1. Objects are unique (i.e.)

2. All un-said sentences are false
Thus if I only say:
I also imply:

3. Only objects I have specified exists
(i.e. There is no object unless I
explicitly use it at some point)

Planning: state

A state is all of the facts ANDed together in
FO logic, but are not allowed to have:
1. Variables(otherwise it would not be specific)
2. Functions (just replace them with objects)
3. Negations (as we assume everything not

mentioned is false)

Planning: actions

Actions have three parts:
1. Name (similar to a function call)
2. Precondition (requirements to use action)
3. Effect (unmentioned states do not change)

For example:

remove black's turn

Planning: actions

Planning: example

Let's look at a grocery store example:
Objects = store locations and food items

Aisle 1 = Milk, Eggs
Aisle 2 = Apples, Bananas
Aisle 3 = Bread, Candy,

ToiletPaper

Planning: example

Planning: example

Initial state = At(Door)
A possible solution:
1. GoTo(Aisle1) 2. Add(Milk)
3. Add(Eggs) 4. GoTo(Aisle2)
5. Add(Apples) 5. GoTo(Aisle3)
6. Add(Bread) 7. Add(ToiletPaper)
8. GoTo(Aisle2) 8. Add(Bananas)
9. GoTo(Checkout)

Not most efficient, but goal reached

Planning: decidability

Since our planning is similar to FO logic,
it is unsurprisingly semi-decidable as well

Thus, in general you will be able to find a
solution if it exists, but possibly be unable
to tell if a solution does not exist

If there are no functions or we know the goal
can be found in a finite number of steps, then
it is decidable

Planning: actions

If we treat the current state like a knowledge
base and actions with s for every variable...

“state entails Precondition(A)” means action
A's preconditions are met for the state

Thus if each action uses v variables, each with
k possible values, there are O(kv) actions
(we can ignore actions that do not change
the current state in some cases)

Planning: difficulty

PlanSAT tells whether a solution exists or not,
but takes PSPACE to tell

If negative preconditions are not allowed, we
find a solution in P, and optimal in NP-hard

Planning: algorithms

Again similar to FO logic, there are two basic
algorithms you can use to try and plan:

1. Forward search - similar to BFS and check
all states you can find in 1 action, then 2
actions, then 3... until you find the goal state

2. Backward search - start at goal and try to
work backwards to initial state

Forward search

Forward search is a brute force search that
finds all possible states you can end up in

Each action is tested on each state currently
known and is repeated until the goal is found

This can be quite costly, as actions that do not
lead to the goal could be repeatedly explored
(we will see a way to improve this)

Forward search

At(Door)

At(Aisle1)

At(Aisle2)

At(Aisle3)

At(Checkout)

At(Door)
GoTo(Door)

GoTo(Checkout)

...

...

...

...

At(Aisle1)
Cart(Milk)

At(Door)

At(Aisle1)

...

AddMilk()

can ignore

Forward search

You try it!
Initial: At(Truck, UPSD) ^ Package(UPSD, P1)

^ Package(UPSD, P2) ^ Mobile(Truck)
Goal: Package(H1, P1) ^ Package(H2, P2)

Forward search

Can I simplify to this?
Initial: At(UPSD) ^ Package(UPSD, P1)

^ Package(UPSD, P2)
Goal: Package(P1, H1) ^ Package(P2, H2)

Forward search

No...

We can do:
Load(H1, P1, UPSD) (m=H1, x=P1, y=UPSD)

As our current state is:
At(UPSD) ^ Package(UPSD, P1)^Package(UPSD, P2)

Somehow we just transported the package
from the UPSD to H1?

Backward search

Backward search is also similar to FO's
backward search

Start at goal and do actions in reverse (swap
effect and precondition), except substitute:

Example:
Goal = At(Home)
Initial = At(Class)
Unify: {x/Home,

y/Class} ... done

Backward search

We also need some easy definition of what
is “away from the goal”

Some problems, such as n-queens do not have
a great “away from goal” definition

While stepping backwards, you need to find
any “swapped” preconditions that are
applicable and find a valid substitution

Heuristics for planning

In “search” we had no generalize-able
heuristics as each problem could be different

Heuristics in planning are also the same, we
want an admissible one found from relaxing
the problem and solving that optimally

There are two ways to always do this:
1. Add more actions
2. Reduce number of states

Heuristics: add actions

Multiple ways to add actions (to goal faster):

1. Ignore preconditions completely - also
ignore any effects not related to goals

This becomes set-covering problem, which
is NP-hard but has P approximations

2. Ignore any deletions in effects (i.e. anything
with), also NP-hard but P approximation

Heuristics: group states

Group similar states together into “super
states” and solve the problem within
“super states” separately (divide & conquer)

A admissible but bad heuristic would be
the maximum of all “super states” individual
solutions (but this is often poor)

A possibly non-admissible would be the sum
of all “super states” (need independence)

