
Using first order logic (Ch. 9)

Backward chaining

Backward chaining is almost the opposite of
forward chaining (and eliminating irrelevancy)

You try all sentences that are of the form:
 , and try to find a way
to satisfy P1, P2, ... recursively

This is similar to a depth first search AND/OR
trees (OR are possible substitutions while
AND nodes are the sentence conjunctions)

Let's go back to this and backward chain
Grilled(Bread)

Backward chaining

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(x) Make(Bread,x,Bread)

2.

1.

4. 6.

5.

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(x) Make(Bread,x,Bread)

2.

1.

4. 6.

5.

These variables have no correlation,
so relabel one to be different

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} applies to all sentences

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

{x/any x}

Backward chaining

The algorithm to compute this needs to mix
between going deeper into the tree (ANDs)
and unifying/substituting (ORs)

For this reason, the search is actually two
different mini-algorithms that intermingle:

1. FOL-BC-OR (unify)
2. FOL-BC-AND (depth)

Backward chaining
FOL-BC-OR(KB, goal, sub)
1. for each rule (lhs => rhs) with rhs == goal
2. standardize-variables(lhs, rhs)
3. for each newSub in FOL-BC-AND(KB, lhs, unify(rhs, goal sub))
4. yield newSub

FOL-BC-AND(KB, goals sub)
1. if sub = failure, return
2. else if length(goals) == 0 then yield sub
3. else
4. first,rest ←First(goals), Rest(goals)
5. for each newSub in FOL-BC-OR(KB, substitute(sub, first), sub)
6. for each newNewSub in FOL-BC-AND(KB, rest, newSub)
7. yield newNewSub

Use backward chaining to infer:
Grilled(Chicken)

Backward chaining

Grilled(Chicken)

Backward chaining

Meat(Chicken) OnGrill(x,Chicken)
2.

4. 5.

Begin DFS (left branch first)

{Chicken/M1}
Fail!

Backward chaining

Similar to normal DFS, this backward chaining
can get stuck in infinite loops (in the case of
functions)

However, in general it can be much faster
as it can be fairly easily parallelized
(the different branches of the tree)

Resolution in FO logic (Ch. 9)

Review: CNF form

Conjunctive normal form is a number of
clauses stuck together with ANDs

Each clause can only contain ORs, and logical
negation must appears right next to literals

For example: CNF with 3 clauses

clauses

First-order logic resolution

To do first-order logic resolution we again
need to get all the sentences to CNF

This requires a few more steps for FOL (red):
1. Use logical equivalence to remove implies
2. Move logical negation next to relations
3. Standardize variables
4. Generalize existential quantifiers
5. Drop universal quantifiers
6. Distribute ORs over ANDs

First-order logic resolution

“All dogs that are able to make everyone
laugh are owned by someone”

First-order logic resolution

I have avoided putting quantifiers anywhere
except the left for simplicity (as you will see)

There is always a equivalent form with all
quantifiers to the left of the main sentence

But the above sentence is logically valid

1. convert implies

As CNF only has ORs and ANDs, we use this:

If there is a , we use the following first:

First-order logic only allows these logical ops:

So we will have reduced everything to just
negation, ANDs and ORs

1. convert implies

... converts to...

This is now the statement:
“Dogs are either not thought as funny by
everyone or owned by someone”

2. move negation to right

Putting negation next to relationships requires
two things:
1. De Morgan's laws:

2. Quantifier negation:

2. move negation to right

... converts to...

This is now the statement:
“All things are either (not a
dog or not funny to a human
or funny to a non-human) or
owned by someone”

3. standardize variables

It is possible to reuse the same variable in
multiple parts of a sentence, such as y in:

You can just rename a variable to make it clear
that there is no conflict (having quantifiers on
the left ensures there is no confusion)

rename this y to z

... converts to...

The meaning is still the same as last time, but
might be easier to understand in half-English:
“Every x is either (not a dog, not funny to y or
y is not a person) or (person z owns x)”

3. standardize variables

We have talked before about how to make a
new object for an existential quantifier:

However, the situation is more difficult for
existential inside universal quantifier:

Does this work?

4. generalize existential

??

This does not work...

This is saying there is a single object (A1),
which is true for all x

To properly represent existential on the inside,
we need to use a function of x to represent y:

4. generalize existential

Function review:
Unary relations = Person(x) (is a relation)
Function = child(x) (is an object)
(functions can also have more than one input)

Here the function F(x) is the y for which
A(x,y) is true for any given x
(this is called Skolemization)

4. generalize existential

... converts to...

... I give up translating

If there were multiple universal quantifiers,
all the variables would be in the function:

4. generalize existential

As we got rid of existential, there is no
confusion about the quantifiers...

So we just simply drop the “for all”s:

... converts to...

5. drop universal quantifiers

To get in CNF form, we need all clauses to
only contain ORs, and be separated by ANDs:

(basic logic rules of equivalence)

6. distribute AND/OR

Substitute into:

... converts to...

6. distribute AND/OR

Once you have the first-order logic in CNF-ish
form, resolution is almost the same

The only difference is that you must unify/
substitute any variables that you merge

For example:

... unify/substitute {y/Y(x)}

Resolution in FO logic

