
Using first order logic (Ch. 9)

Loglish

Consider the sentence:
“No one is sharing a seat”

Logic-English: “For all pairs of people if there
is at least one chair they are both sitting on,
then they must be the same person”

In logic:

Loglish

Consider the sentence:
“No one is sharing a seat”

Logic-English: “For all pairs of people,
on all the chairs both people are sitting in,
the pair must be the same person”

In logic:

Loglish

Consider the sentence:
“No one is sharing a seat”

Logic-English: “All chairs with someone in
it, everyone else cannot be in it”

In logic:

or

Unification

A unification is a substitution for variables
that creates a valid sentence by specifying
a map between variables and objects

For example, consider:

What variables can we unify/substitute?

Unification

First sentence is the only one with variables,
there are 9 options (only 6 if x ≠ y)

One unification is {x/Sue, y/Devin}
We cannot say {x/Devin, y/Alex}, as this is
creates a contradiction

General modus ponens

We do not need to convert to propositional
logic to use some rules of reasoning

Modus ponens can be applied even if there
are variables, as long as we can unify them:

We can unify the top sentence with {x/Hippo},
so we can conclude:

General modus ponens

If you want to use this general modus ponens,
finding the unification can be expensive

You basically need to try all substitutions,
though you can store your data in smart ways
to make look-up much more quickly

Using just general modus ponens, you can do
basic inference with first order logic
(what is the problem??)

General modus ponens

Objects = {Cat, Dog, Frog, Rat, Sally, Jane}

Is Sally happy?
How about Party(Sally, Frog)?

General modus ponens

We can substitute {x/Sally} here with MP:

To get:
Then sub. {x/Sally, y/Frog} with MP here:

To get:

However, we cannot tell if Sally is happy,
as we cannot unify:

General modus ponens

You try!

Can you get Grilled(Bread)?
How about Grilled(Chicken)?

General modus ponens

You try!

Can you get Grilled(Bread)? Yes
How about Grilled(Chicken)? No

Forward chaining

You probably just reasoned out the way to
think through this, but we will talk about two
algorithms to do this in a procedural manner

The first we will look at is forward chaining,
where you build up new sentences using
modus ponens until you generate your goal

Then we will talk about improvements over
this basic implementation

Consider the following labeling...

Forward chaining

Forward chaining

1. 2. 3. 4. 5. 6.

Sandwich(Bread)Grilled(M1)

Grilled(Bread)

Forward chaining

Algorithm:
1. repeat until new empty
2. new ←{}
3. for each sentence in KB
4. for each substantiation for a modus ponens
5. q ← substitute RHS of modus ponens
6. if q does not unify/match sentence in KB
7. new ←new U q
8. if q satisfies query, return q
9. add new to KB
10. return false

Forward chaining

Build the whole forward chaining KB for:

Forward chaining

1. 2. 3. 4. 5. 6.

C(B1) ^ D(B1)

F(B1)

Forward chaining

This basic approach is redundant and can be
improved in three major ways:

1. Improve the efficiency of unification
-Allows for faster modus ponens

2. Incremental forward chaining
-Reduces redundant computations

3. Eliminate irrelevant facts
-Prunes KB

Unification efficiency

It is efficient to unify/substitute for the variable
with the least possibilities on the left hand side
(LHS) of modus ponens

This is basically the same arguments are the
“minimum remaining value” for CSPs

The look-up of values for a single variable is
constant time, but then we need to compare
against all other in sentence (NP-hard problem)

Unification efficiency

In the example, we only have B(B1) true for
some variable B1, which is probably smaller
than all possible A(x)

So here it would make sense to substitute B1
first into the first sentence, then try to find a
matching A value (which is easy as A(x) is
valid for any x)

Incremental chaining

All novel sentences build off the “new” set
(except for building the first level)

The computer re-searches all the old sentences
every time and regenerates the same sentences

By requiring the “new” set to be involved,
we can greatly cut down computation of the
depth of chain tree is fairly deep

Incremental chaining

In the example, the first loop of chaining finds:

When starting the second loop, all possible
combinations of the original KB will be
searched again, and generate the above again

Instead, we can limit our search to just
 combined with any of the
original KB sentences

Eliminate irrelevancy

There are two primary ways to do this:

1. Start from the goal and work backwards
2. Restrict KB to help guide search

The first way works backwards keeping track
of any possible useful sentences

Any sentences not found on the backtrack can
be discarded without effecting this query

Eliminate irrelevancy

You can add more restrictions to existing
sentences to focus the search early on

This combined with the unification efficiency
can greatly speed up search

For example, if we queried: , we could
modify the first sentence:

and add Elim(Cat) to cause conflict early

Forward chaining

Forward chaining is sound (will not create
invalid sentences)

If all the sentences in the KB are definite then
it is complete (can find all entailed sentences)

Definite means that there can only be one
positive literal in CNF form (anything with an
implies has only one relationship on the RHS)

Backward chaining

Backward chaining is almost the opposite of
forward chaining (and eliminating irrelevancy)

You try all sentences that are of the form:
 , and try to find a way
to satisfy P1, P2, ... recursively

This is similar to a depth first search AND/OR
trees (OR are possible substitutions while
AND nodes are the sentence conjunctions)

Let's go back to this and backward chain
Grilled(Bread)

Backward chaining

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(x) Make(Bread,x,Bread)

2.

1.

4. 6.

5.

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(x) Make(Bread,x,Bread)

2.

1.

4. 6.

5.

These variables have no correlation,
so relabel one to be different

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(z) Make(Bread,z,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} applies to all sentences

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

Grilled(Bread)

Backward chaining

Sandwich(Bread) OnGrill(x,Bread)

Meat(M1) Make(Bread,M1,Bread)

2.

1.

4. 6.

5.

Begin DFS (left branch first)

{z/M1} {}

{x/any x}

Backward chaining

The algorithm to compute this needs to mix
between going deeper into the tree (ANDs)
and unifying/substituting (ORs)

For this reason, the search is actually two
different mini-algorithms that intermingle:

1. FOL-BC-OR (unify)
2. FOL-BC-AND (depth)

Backward chaining
FOL-BC-OR(KB, goal, sub)
1. for each rule (lhs => rhs) with rhs == goal
2. standardize-variables(lhs, rhs)
3. for each newSub in FOL-BC-AND(KB, lhs, unify(rhs, goal sub))
4. yield newSub

FOL-BC-AND(KB, goals sub)
1. if sub = failure, return
2. else if length(goals) == 0 then yield sub
3. else
4. first,rest ←First(goals), Rest(goals)
5. for each newSub in FOL-BC-OR(KB, substitute(sub, first), sub)
6. for each newNewSub in FOL-BC-AND(KB, rest, newSub)
7. yield newNewSub

Use backward chaining to infer:
Grilled(Chicken)

Backward chaining

Grilled(Chicken)

Backward chaining

Meat(Chicken) OnGrill(x,Chicken)
2.

4. 5.

Begin DFS (left branch first)

{Chicken/M1}
Fail!

Backward chaining

Similar to normal DFS, this backward chaining
can get stuck in infinite loops (in the case of
functions)

However, in general it can be much faster
as it can be fairly easily parallelized
(the different branches of the tree)

