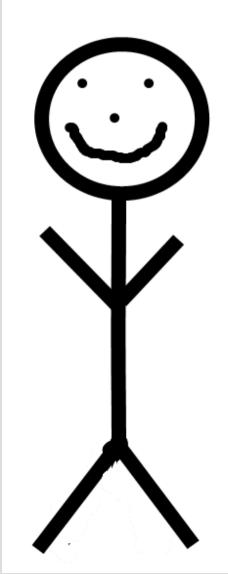
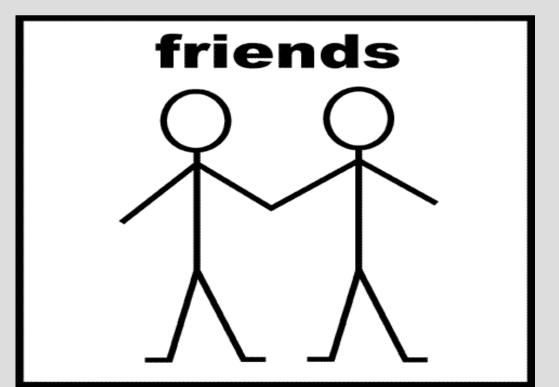
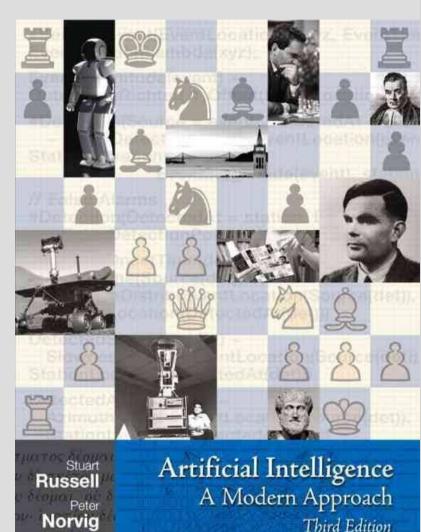

Welcome to CSci 4511W


Introduction to Artificial Intelligence I

Instructor (me)


James Parker Shepherd Laboratories 391

Primary contact: jparker@cs.umn.edu


Teaching Assistants

Liyao Lu, Zane Smith, Fei Wu, Zechen Zhang

Textbook

Artificial Intelligence A Modern Approach, Russel and Norvig, 3rd edition

Class website

www.cs.umn.edu/academics/classes Or google "umn.edu csci class"

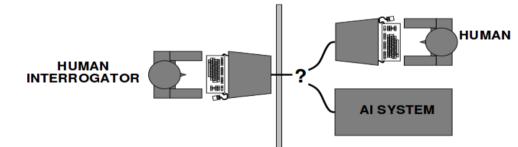
Syllabus, schedule, other goodies

Moodle page will have grades and homework submission

www.cs.umn.edu

CSci 4511W: Announ	cements - Mozilla Firefox								
ci 4511W: Announce ×	+								
() www-users.cselabs.um	n.edu/classes/Fall-2017/csci4511/						• C 🏠	S	≡
		Campuses:	Twin Cities	Crookston	Duluth Morr	is Rocheste	er Other Locations		
Univers	sity of Minnesota					myU	> One Stop >		
Driven to Discover™					Search U of M	Web Sites	Search		
Science & Engine	ering			CSE Hon	ne CSE Directo	ry Give to C	SE Student Dashboard	1	
Home Office Hours	CSci 4511W: Artificial Intelli	genc	e						
Schedule Syllabus	Class	Annou	uncem	ents					
Moodle (grades and hw submission)	09/04/2017 Class website up.								
	ersity of Minnesota. All rights reserved. a is an equal opportunity educator and employer		Twin Citi	es Campus:	Parking & Tra Direct		Maps & Directions ct U of M Privacy		

Last modified on September 4, 2017


Don't like my slides? (tough)

http://aima.eecs.berkeley.edu/slides-pdf/

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- ♦ "Can machines think?" → "Can machines behave intelligently?"
- \diamond Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- \diamond Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Prerequisites

- 1. Competent programmer
- 2. Basic knowledge of functional programming (some lisp)??
- Understanding of data structures (graphs and trees)
- 4. Basic knowledge of formal logic (propositional and predicate)

Syllabus

25% Homework (-15% per day late) 20% Writing assignments (-15% pdl) **15%** Project 10% Midterm (Tues. Oct. 10) 10% Midterm (Tues. Nov. 14) 20% Final (Tues. Dec. 19, 4:00-6:00pm) All exams are open book/notes

Syllabus

Grading scale: 93% A 90% A-87% B+ 83% B 80% B-

77% C+ 73% C 70% C-67% D+ 60% D Below F

Schedule

Week 1-4, Ch 1-4 - Intro & Search Week 5-6, Ch 5, 17.5 - Game playing Week 7-11, Ch 6-9 - Logic Week 12-14, Ch 10, 12 - Planning Week 15 - Special topics

There will be one assignment (or exam) every week on Sundays (first one due Sept. 24)

Writing assignments

The writing assignments will use Latex (down with docx!)

The first few will be reviews of related topics and the last couple will tie into the project

These can be resubmitted within two weeks of being returned for another regrade (once)

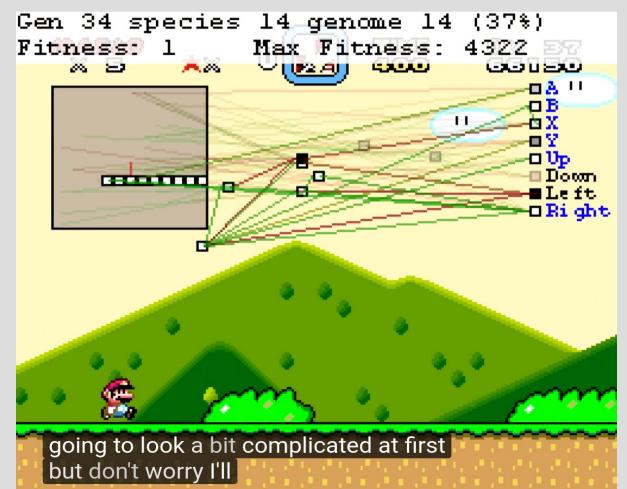
The project will be a large part of the class and should be about 10-12 pages and include:

- -Title, authors, abstract
- -Introduction & problem description (1-2 pg)
- -Literature review (2-3 pages)
- -Description of your approach (2-3 pages)
- -Analysis of results (1-2 pages)
- -Conclusion and summary -Bibliography

You may work with partner if you wish, but we will expect higher quality of work

If you form a group, you must also submit a the specific contributions of each member

The project should reflect about 50 hours of work per person (including reading, programing and writing)


You pick the project, but must use knowledge representation (something interesting)

Some ideas:

- -AI for a game (3D tic-tac-toe, board games...)
- -Spam filter (naive Bayes probability)
- -Use A* to plan paths around Minneapolis
- -Agent behavior in a system (evacuation or disaster resuce)
- -Planning (snail-mail delivery, TSP)

Mario?

https://www.youtube.com/watch?v=qv6UVOQ0F44

Syllabus

Any questions?

What is intelligence?

What is intelligence? -No convenient definition

What is <u>rational</u>?

What is intelligence? -No convenient definition

What is <u>rational</u>? -Acts on knowledge to achieve "best outcome"

Turing Test

For a long time, the Turing Test was a supposed indication of intelligence

A person would question two entities and have to determine which one is the computer and human

This is not very popular anymore

Turing Test

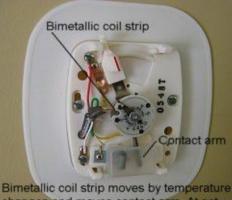
- To pass the Turing Test, a computer needs the following:
- Natural language processing (as the test is written and not verbal)
- Knowledge representation (storage)
- Reasoning (logical conclusions)
- Machine Learning (extrapolation)

Turing Test

https://www.youtube.com/watch?v=WFR3lOm_xhE

The formal definition of a robot is not very useful either

For our purpose, a robot/agent:


- Perceives the environment
- Adapts to changes
- Pursues a goal

Is this a robot?

... How about this?

changes and moves contact arm. At set temp, arm moves to open or close contact

Thus a <u>rational agent</u> acts to achieve the best outcome or goal (or best in expectation with uncertainty)

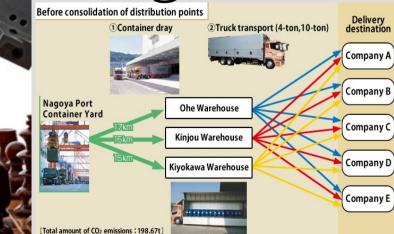
A <u>limitedly rational agent</u> makes the best choice with limited computation (also called online algorithms)

Often times, fully exploring all the options is too costly (takes forever)

Chess: 10⁴⁷ states (tree about 10¹²³) Go: 10¹⁷¹ states (tree about 10³⁶⁰) At 1 million states per second... Chess: 10¹⁰⁹ years Go: 10³⁴⁶ years

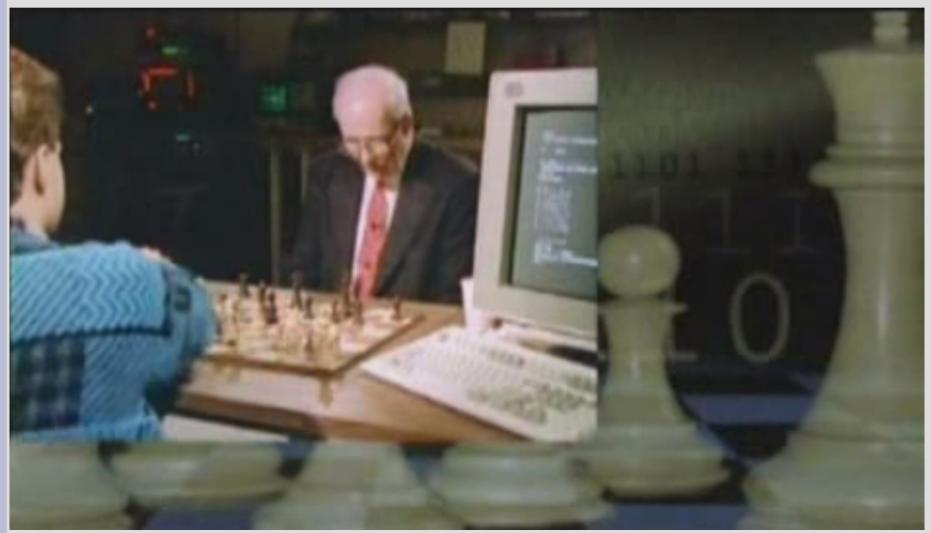
Simple computers have been built for hundreds of years

For artificial intelligence to mature, it needed to borrow from other fields: Math – logic and proofs Statistics – probability Economics – utility


Self driving cars

Speech recognition

Game playing Logistics Before consolidation of distribution points



Spam filter

AI - Chess

Spring 1997 - Deep(er) Blue (CMU / IBM)

AI - Go

Spring 2016 - AlphaGo (Google)

AI - Dota2

August 2017 - OpenAI (Elon Musk)

https://www.youtube.com/watch?v=l92J1UvHf6M&feature=youtu.be

