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CSci 4061: Introduction to Operating Systems  (Spring 2013) 

Second Midterm Exam (April 11, 2013)     (100 points) 

Open Book and Lecture Notes 

(Bring Your U Photo Id to the Exam) 
 

This exam paper contains 5 questions (12 pages) 

Total 100 points. 
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Question 1 (16 points):  
 
Indicate by circling YES or NO if the given statement is correct or incorrect. 
 
(a) For each kernel-level thread, a separate stack is maintained in the address-space of the process. 
               YES              NO 
 
(b) For each kernel-level thread, a separate stack is maintained in the kernel memory space. 
               YES              NO 
 
(c) For a kernel-level thread, data related to scheduling and execution context is maintained by the 
kernel.               YES              NO 
 
(d) When a process masks a certain signal, then that signal is ignored and discarded by the kernel. 
                                                                                                   YES              NO 
 
(e) Critical sections implemented using the Test-and-Set instruction should be short in terms of 
execution time.                                       YES             NO 
   
 (f) A signal handler function can return any type of data as its return value.               YES             NO 
 
(g) When a process is swapped out to disk, some of its threads can still execute if threads are 
supported at the kernel level.                                                                          YES            NO 
 
(h)  When a process is swapped out to disk, signals can still be sent to that process.   YES            NO 
 
(i)  When a process is swapped out to disk, all of its open file descriptors are closed.   YES            NO 
 
(j)  When a process is swapped out to disk, memory allocated for its address-space is freed.  

         YES            NO 
 
(k)  When a process is swapped out to disk, process state transition from  READY state to WAITING 
state can still happen.                                                                                                    YES            NO 
 
(l)  When a process is swapped out to disk, process state transition from WAITING state to READY 
state can still happen.                                                    YES            NO 
 
(m) All threads in a process share all open file descriptors of that process.        YES            NO 
 
(n)  Using the wait() function process can wait for the termination of any process, including  its “grand-
children”, i.e. the children of any of its child processes.            YES          NO 
 
(o) FCFS scheduling policy is not suitable for interactive systems.          YES           NO 
 
(p) CPU schedulers for interactive systems tend to give higher priority to processes that use CPU a 
lot without doing much input/output operations.                                          YES           NO 
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Question 2 (24 points):    Consider four jobs (A, B, C, and D) waiting in a queue to be processed. 
Their respective total service times, as they appear in the queue (starting with the job at the head of 
the queue), are 10, 15, 5 and 30 msec. Assume that the jobs arrived at the same time. 
 
 (a) (8 points) For the following scheduling policies, draw a time chart showing when each of the five 
jobs will be completed. 

 FCFS (with jobs’ order in the queue) 

 Shortest Job First 

 Round-Robin (quantum = 10 msec) 

 Round-Robin (quantum = 5 msec) 
 
 (b) (8 points)  Determine the average turnaround time for each of the scheduling policies of part (a) 
above. 
 
 (c) (8 points) Compute the average waiting time for the four cases in part (a). 



 4 

(continue your answer for Question 2…) 
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Question 3:  (20 points) 
Consider the following program which will create a set of processes, and  answer the questions given 
below the code. Assume that there are no errors in creating processes. 

void main ( void ) { 
  int  i,  stat;         int k = 1;     int n = 3;      
  pid_t childpid; 
  for ( i=0;  i < n; i++ )  { 
      printf ( “i = %d k = %d “, i, k); 
      childpid = fork(); 
      if ( childpid != 0 )  {   /* I am parent; I just created a child */ 
               break; 
      } 
      else {     
               k= k*2; 
      } 
  }   // end of for loop 

  if ( i==n) {   
      exit(k); 
  } 
  else {    wait ( &stat ); 
              if ( WIFEXITED(stat) ) { 
                 printf ("Exit status %d \n", WEXITSTATUS(stat) ); 
                exit( k + WEXITSTATUS(stat) ); 
             } 
  } 
} 

 
Part A: (10 points)  Show the tree of parent-child relationships among the processes that are created 
by this program. Number the processes in the order in which they are created, starting with the 
process executing the above code as process number 0. 
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Part B (10 points):  Show the output produced by this program. 
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Question 4 (20 points):  
 
Part (a) (10 points):  Write the missing parts of the code to create the two pipes between the parent 
and its child process, as shown in the figure below.  These processes are connected in a ring 
structure. The standard out of the parent process is connected to the write end of the pipe A, and the 
standard input of the child is connected the read end of pipe A. Similarly pipe B connects the 
standard out of the child process to the standard input of the parent process.  In your code you MUST 
close all unnecessary file descriptors. 
 
 
 
 
 
 
 
 
 
 
 
Parent Process:  /* No error checking code needed */ 

  int fdA[2]; 

  int fdB[2]; 

  pipe( fdA );    // create pipe A 

  pipe( fdB );    // create pipe B 

    

 if ( fork() ) { 
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Part (b) (10 points): What will be the output produced by the following program? 
int i = 0; 

void myalarm ( int signum ) { 

  i = 4; 

} 

void main () { 

   signal( SIGALRM,   myalarm ); 

   alarm(3); 

   for (i=0; i<7; i++ ){ 

      printf("Hello %d\n", i); 

      sleep( 2 ); 

   } 

} 
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Question 4 (20 points): Barrier Synchronization Problem: A system contains N processes.  Each of 
these processes executes certain computation phase A, it then reaches the barrier synchronization 
point and waits for all other processes to finish their execution of phase A and reach the barrier.  A 
process can proceed to execute phase B only after all N processes have reached the barrier and 
executed the barrier synchronization code. 
 
You are asked to write barrier synchronization code using semaphores.   
Your code should be written in pseudo-code notation as used in class examples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/* Declare semaphores and other shared variables here */ 
 
 
 
 
 
 
 
 
 
Procedure BarrierSychronization(  )  { 
/* Write barrier synchronization code here   -  using pseudo code notation  */ 

                                        Barrier Synchronization 

Process 2 Process 1 Process i Process N-1 Process N 

Phase A Phase A Phase A Phase A Phase A 

Phase B Phase B Phase B Phase B Phase B 
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Continue here answer for Question 5…
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