Unweighted directed graphs

DECEPTION

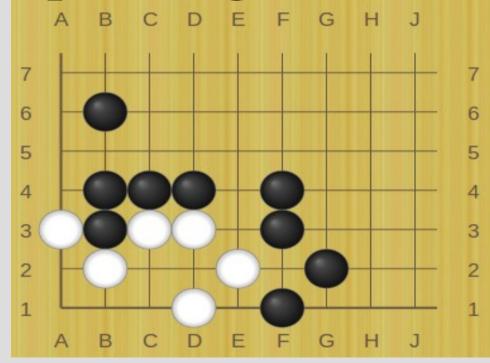
I am so totally doing this on Halloween

Solve problems by making a tree of the state space 0 X's turn (MAX) max +1 +1X 0 00 $0 \times$ \times max

Often times, fully exploring the state space is too costly (takes forever)

Chess: 10^{47} states (tree about 10^{123}) Go: 10^{171} states (tree about 10^{360}) At 1 million states per second... Chess: 10^{109} years (past heat death Go: 10^{346} years of universe)

BFS prioritizes "exploring" DFS prioritizes "exploiting"



White to move

Black to move

BFS benefits?

DFS benefits?

BFS benefits? -can evaluate best path

DFS benefits? -uses less memory on complete search

BFS and DFS in graphs

BFS: shortest path from origin to any node

DFS: find graph structure

Both running time of O(V+E)

Breadth first search

BFS(G,s) // to find shortest path from s for all v in V v.color=white, v.d= ∞ , v. π =NIL s.color=grey, v.d=0 Enqueue(Q,s) while(Q not empty) u = Dequeue(Q,s)for v in G.adj[u] if v.color == white v.color=grey, v.d=u.d+1, v.π=u Enqueue(Q,v) u.color=black

Breadth first search

Let $\delta(s,v)$ be the shortest path from s to v

After running BFS you can find this path as: $v.\pi$ to $(v.\pi).\pi$ to ... s

(pseudo code on p. 601, recursion)

BFS correctness

Proof: contradiction Assume $\delta(s,v) \neq v.d$ v.d $\geq \delta(s,v)$ (Lemma 22.2, induction) Thus v.d > $\delta(s,v)$ Let u be previous node on $\delta(s,v)$ Thus $\delta(s,v) = \delta(s,u)+1$ and $\delta(s,u) = u.d$ Then v.d > $\delta(s,v) = \delta(s,u) + 1 = u.d + 1$

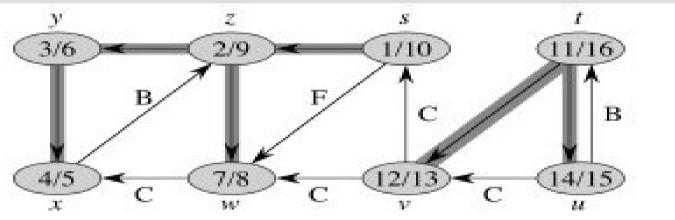
BFS correctness

 $v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1$ Cases on color of v when u dequeue, all cases invalidate top equation Case white: alg sets v.d = u.d + 1 Case black: already removed thus v.d \leq u.d (corollary 22.4) Case grey: exists w that dequeued v, $v.d = w.d+1 \le u.d+1$ (corollary 22.4)

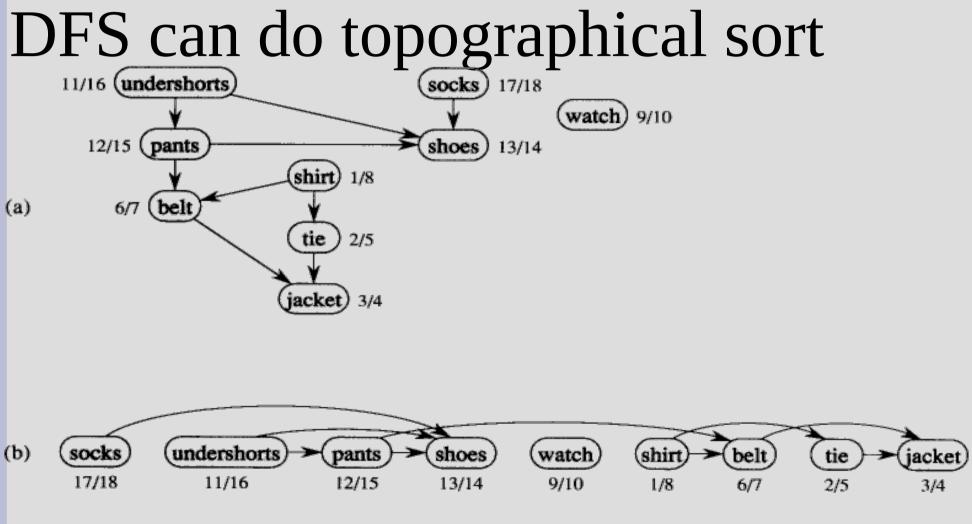
DFS(G) for all v in V v.color=white, v.π=NIL time=0 for each v in V if v.color==white DFS-Visit(G,v)

DFS-Visit(G,u) time=time+1 u.d=time, u.color=grey for each v in G.adj[u] if v.color == white $V.\pi=U$ DFS-Visit(G,v) u.color=black, time=time+1, u.f=time

Edge markers:

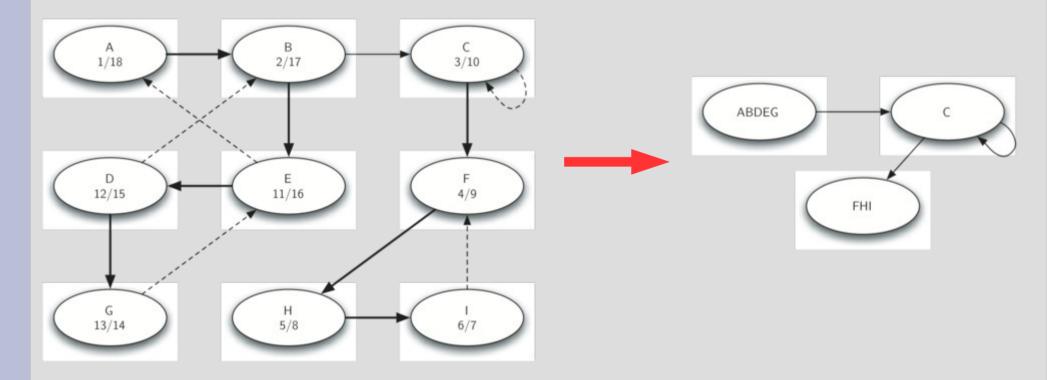


Consider edge u to v C = Edge to black node (u.d > v.f) B = Edge to grey node (u.f < v.f) F = Edge to black node (u.f > v.f)



Run DFS, sort in decreasing finish time

DFS can find strongly connected components



Let G^T be G with edges reversed

Then to get strongly connected:
1. DFS(G) to get finish times
2. Compute G^T
3. DFS(G^T) on vertex in decreasing finish time

4. Each tree in forest SC component