

Unweighted directed graphs

BFS and DFS in trees

Solve problems by making a tree
of the state space

max

min

max

BFS and DFS in trees

Often times, fully exploring the state
space is too costly (takes forever)

Chess: 1047 states (tree about 10123)
Go: 10171 states (tree about 10360)
At 1 million states per second...
Chess: 10109 years (past heat death
Go: 10346 years of universe)

BFS and DFS in trees

BFS prioritizes “exploring”
DFS prioritizes “exploiting”

White to move Black to move

BFS and DFS in trees

BFS benefits?

DFS benefits?

BFS and DFS in trees

BFS benefits?
-can evaluate best path

DFS benefits?
-uses less memory on complete

search

BFS and DFS in graphs

BFS: shortest path from origin to any
node

DFS: find graph structure

Both running time of O(V+E)

Breadth first search
BFS(G,s) // to find shortest path from s
for all v in V

v.color=white, v.d=∞,v.π=NIL
s.color=grey, v.d=0
Enqueue(Q,s)
while(Q not empty)

u = Dequeue(Q,s)
for v in G.adj[u]

if v.color == white
v.color=grey, v.d=u.d+1, v.π=u
Enqueue(Q,v)

u.color=black

Breadth first search

Let δ(s,v) be the shortest path
from s to v

After running BFS you can find this
path as: v.π to (v.π).π to ... s

(pseudo code on p. 601, recursion)

BFS correctness

Proof: contradiction
Assume δ(s,v) ≠ v.d
v.d > δ(s,v) (Lemma 22.2, induction)
Thus v.d > δ(s,v)
Let u be previous node on δ(s,v)
Thus δ(s,v) = δ(s,u)+1
and δ(s,u) = u.d
Then v.d > δ(s,v) = δ(s,u)+1 = u.d+1

BFS correctness

v.d > δ(s,v) = δ(s,u)+1 = u.d+1
Cases on color of v when u dequeue,

all cases invalidate top equation
Case white: alg sets v.d = u.d + 1
Case black: already removed
thus v.d < u.d (corollary 22.4)
Case grey: exists w that dequeued v,
v.d = w.d+1 < u.d+1 (corollary 22.4)

Depth first search

DFS(G)
for all v in V

v.color=white, v.π=NIL
time=0
for each v in V

if v.color==white
DFS-Visit(G,v)

Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]

if v.color == white
v.π=u
DFS-Visit(G,v)

u.color=black, time=time+1, u.f=time

Depth first search

Edge markers:

Consider edge u to v
C = Edge to black node (u.d > v.f)
B = Edge to grey node (u.f < v.f)
F = Edge to black node (u.f > v.f)

Depth first search

DFS can do topographical sort

Run DFS, sort in decreasing finish time

Depth first search

DFS can find strongly connected
components

Depth first search

Let GT be G with edges reversed

Then to get strongly connected:
1. DFS(G) to get finish times
2. Compute GT

3. DFS(GT) on vertex in decreasing
finish time

4. Each tree in forest SC component

