I Unweighted directed graphs

Midterm & gradescope
I - will get an email today to register
(username name is your email)
- tests should appear by next Monday
(nothing there now)

Announcements

I Graph

A directed graph G is a set of edges
I and vertices: G = (V, E)

Two common ways to represent
a graph:
-Adjacency matrix
-Adjacency list

I Graph

An adjacency matrix has a 1 in row i
I and column j if you can go from
node 1 to node j

o
/
©

—k = ~k = —k M

o |l = ||l =|a
o|lo|lo|lo| ol m

= o = —k =k (¥

= = = = = =k

I Graph

An adjacency list just makes lists
I out of each row (list of edges out
from every vertex)

. &

1
2 F» 3 |1
3

3

@ 1 0 |1 |1
‘\ 23001
@ 31010

4 {0 |00

510 (110

@ 4 = 4 | |
5 L= 2 | /

= = = = = on

I Graph

Ditference between adjacency matrix
I and adjacency list?

Graph

Ditference between adjacency matrix
and adjacency list?

Matrix is more memory O(|V/|%),
less computation: O(1) lookup

List is less memory O(E+V) if sparse,
more computation: O(branch factor)

I Graph

Adjacency matrix, A=A', represents
I the number of paths from row node
to column node in 1 step

Prove: A" is the number of paths

from row node to column node in
n steps

I Graph

Proof: Induction
I Base: A° =1, O steps from i is i
Induction: (Assume A", show A™)
Leta" . = i"row, j* column of A"
n+tl — n 1
Then a ST At A

This is just matrix multiplication

Create first-in-first-out (FIFO) queue
I to explore unvisited nodes

Breadth First Search Overview

] ' i)
3
2 3
» 5
4 5 .
’ v) ’ vi] o

O 0™ 0 0™ o0 o
D ¢ Q o O

https://www.youtube.com/watch?v=nl0dT288VLs

Breadth First Search Overview

Consider the graph below

Suppose we wanted to get from “a”

(P

to “c” using breadth first search

I BFS Overview f{_ #*

| e
To keep track ot which ONRO

I nodes we have seen, we will do:

White nodes = never seen before
Grey nodes = nodes in QQ

Black nodes = nodes that are done
To keep track of who first saw nodes
I will make red arrows (7 in book)

I BFS Overview

| e
First, we add the start ONRO

I to the queue, so Q = {a}

Then we will repeatedly take the
left-most item in QQ and add all of its
neighbors (that we haven't seen yet)
to the Q on the right

I BES Overview

Q=1a}
[.eft-most = a
White neighbors = b & d

New Q = {b, d}

I BES Overview

Q= 1b, d;
Left-most = b
White neighbors = e

New Q = {d, e}

I BES Overview

Q=1d, e}
Left-most = d
White neighbors =c &t & g

Ner {e I, g}

I BES Overview

Q=1e0t, g}
Left-most = e
White neighbors = (none)

Ner {c f, g}

I BES Overview

Q={ct, g}
Left-most = C
Done! We found c, backtrack on

red arrows to get path from “a”
>

I Create first-in-last-out (FILO) queue
I to explore unvisited nodes

Depth First Search Overview

I You can solve mazes by putting
I your left-hand on the wall and
following it

Depth First Search Overview

(i.e. left turns
at every
intersection)

I You can solve mazes by putting
I your left-hand on the wall and
following it 7

E%‘T_}—’

Depth First Search Overview

(i.e. left turns
at every
intersection)

I This is actually just depth first search
I (add nodes to the “right” first)

~

E%?‘J

Depth First Search Overview

I Depth First Search Overview

Q=1{A}
I Right most =
White nelghbors = {B}

New Q = {B}

I Depth First Search Overview

Q=1{B}
I Right most =
White nelghbors ={C, D}

New Q = {C, D}
D N
¥
EE = XLt
cl 1G IH <J 1& IH

I Depth First Search Overview

I Q=1{C, D}

I Right most = D
White neighbors = {H, E}
New Q = {C, H, E}

N >
K K

A
¢ [E= = XN

| 14

S 1G H Q€ N
&~ | X &~

I Q=1{C H, E}

I Right most = E
White neighbors = {F, G}
New Q ={C, H, F, G}

Depth First Search Overview

2 2
K K

+
XN + *@;1
I I
] 15 N <] IS N

W &~ %
/ J / J

IQZ{C,H,F,G}

I Right most = G
White neighbors = { }
New Q = {C, H, F}

Depth First Search Overview

I Q=1{C, H, F}

I Right most = F
White neighbors = { }
New Q = {C, H}

Depth First Search Overview

I Depth First Search Overview

I Q=1{C, H}

I Right most = H
White neighbors = {1, J}
New Q = {C, I, J}

| = | =
5 X = X PpeX
E|+ E+
< N < =X

I Depth First Search Overview

I Q=1{G, 1, J}
I Right most = J

J is exit, we are done

K
A

’ E)l
N\
L\

+
q b Ex
/ .t

I BFS and DEFS in trees

Solve problems by making a tree
I of the state space %0

O] X
X X's turn (MAX)
MaX——s ' —
_la—-—'—‘__ |-l q__‘_h___‘———uD
O[O X 00| X 010 X
X% X X | X
. 0| X O | X| X O|X
-1 +1 -1 0 0 +1
O[O X O|O|X O|0|X 0|0| X 00| X O|0|X
O | X| X X[X 0OX X0 X|X]|O b4 B
O(X 0| X|0 O | X| X O|X| X 0 X O|X|0
MaX=—— |, s |&§ s
0|0 X O|0| X 00| X O|0O|X
X | X| X X|X]|0 X[|X|O X | X | X
0| X|0 O|X|{X O|X|X 0|X|0

BFS and DEFS in trees

Often times, fully exploring the state
space is too costly (takes forever)

Chess: 10% states (tree about 10'+°)
Go: 10'"! states (tree about 10°°)
At 1 million states per second...
Chess: 10'° years (past heat death
Go: 10°* years of universe)

I BFS and DEFS in trees

BEFS prioritizes “exploring”
I DFS prioritizes “exploiting”

(?i? aﬁg Sl c (IBdie | = Nallle
- Al
-ﬁ- E Allgll c IDHE | F NG e |3

White to move Black to move

= MNOWw B N

I BFS and DEFS in trees

BFS benefits?

DES benefits?

I BFS and DEFS in trees

BES benefits?
I -if stopped before full search, can
evaluate best found

DES benefits?

-uses less memory on complete
search

I BES and DFS in graphs

BFS: shortest path from origin to any
I node

DFS: find graph structure

Both running time of O(V+E)

I Breadth first search

I BFS(G,s) // to find shortest path from s
forallvinV
I v.color=white, v.d=oo,v.n=NIL
s.color=grey, v.d=0
Enqueue(Q),s)
while(QQ not empty)
u = Dequeue(Q),s)
for v in G.adj[u]
if v.color == white
v.color=grey, v.d=u.d+1, v.n=u
Enqueue(Q,v)
u.color=Dblack

I Breadth first search

Let 0(s,v) be the shortest path
fromstov

After running BFS you can find this
path as: v.it to (v.mm).mto ... S

(pseudo code on p. 601, recursion)

Proof: contradiction
I Assume 0o(s,v) # v.d
v.d > 0(s,v) (Lemma 22.2, induction)
Thus v.d > 0(s,V)
Let u be previous node on 0(s,v)
Thus 0(s,v) = o(s,u)+1
and o(s,u) = u.d
Then v.d > o6(s,v) = o(s,u)+1 = u.d+1

BFES correctness

I BFES correctness

I v.d > 0(s,v) = o(s,u)+1 = u.d+1
I Cases on color of v when u dequeue,
all cases invalidate top equation

Case white: alg sets v.d = u.d + 1
Case black: already removed
thus v.d < u.d (corollary 22.4)
Case grey: exists w that dequeued v,
v.d = w.d+1 <u.d+1 (corollary 22.4)

Depth first search

DFS(G)

forallvinV
v.color=white, v.m=NIL

time=0

foreachvinV

if v.color==white
DFS-Visit(G,v)

Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]
if v.color == white

V.T=u

DFS-Visit(G,v)
u.color=black, time=time+1, u.f=time

I Edge markers

A

Con51der edge utov

C = Edge to black node (u.d > v.f)
B = Edge to grey node (u.f < v.f)
F = Edge to black node (u.f > v.1)

Depth first search

Depth first search
DFS can do topographlcal sort

11/16 @ndarshnns)‘ sﬁcks 17/18
12/15 | pants

shoes) 13/14

(a)

v D ()) o) (e @ e o) =)

17/18 11/16 12/15 13/14 S/10 2{5 34

Run DFS, sort in decreasing finish time

Weighted graphs

\ (1111 motl_ler ISSI] fat,

SENY f cannnt Illlll
L shnrtest path around! || 12

I Weighted graph

Edges in weighted graph are assigned
I a weight: w(v,,v,), v, v inV

If pathp =<v, v, ... v > then the

weight is: w(p) = >*_ (v, ,,V))
Shortest Path:
o(u,v): min{w(p) : v,=u,v,=Vv)}

I shorted paths

Shortest paths

Today we will look at single-source

This finds the shortest path from
some starting vertex, s, to any other
vertex on the graph (if it exists)

This creates G, the shortest path tree

I Shortest paths

Optimal substructure: Let 6(v,,v,)=p,
then forall 0 <i<j <Kk, S(Vi,Vj):pi,j:

SV, Vo .. Vj>

i+1°
Proot?

Where have we seen this before?

I Optimal substructure: Let 6(v,,v,)=p,
I then forall 0 <i<j <Kk, S(Vi,Vj):pi,j:
<V, V

Shortest paths

i+1°

oo V.2
j

Prootf? Contradiction!
Suppose w(p‘i,j) < p(i,j), then let

Py = Py; P, P, then w(p'y) <w(p)

We will only do relaxation on the
I values v.d (min weight) for vertex v

Relaxation

Relax(u,v,w)

if(v.d > u.d + w(u,v))
v.d = u.d+w(u,v)
V.TTI=U

We will assume all vertices start with
I v.d=oo,v.m=NIL except s, s.d=0

Relaxation

This will take O(|V|) time

This will not effect the asymptotic
runtime as it will be at least O(|V]) to
find single-source shortest path

Relaxation

elaxation properties:

. 0(s,v) < 0(s,u) + 0(u,v) (triangle inequality)

. v.d > 6(s,v), v.d is monotonically decreasing

. 1f no path, v.d =06(s,v) =0

. 1f 0(s,v), when (v.m).d=0(s,v.n) then
relax(v.m,v,w) causes v.d=6(s,v)

5. it 0(v,,v,) = P, ,» then when relaxed in

order (v, v,), (v, V,), ... (V

~ W N~

»V,) then
v, ,~0(v,,v,) even if other relax happen
6. when v.d=6(s,v) for all vin V, G_is shortest

path tree rooted at s

I DFS can do topologlcal sort (DAG)

11/16 @nd rshnns)\ [suck) 17/18
12/15 | pants

shoes) 13/14

Directed Acyclic Graphs

» (andershors) > (panis) > (shoss) @iy o) (o))

17/18 11/16 12/15 13/14 S/10 1/8 o/f/ 215 34

Run DFS, sort in decreasing finish time

I DAG-shortest-paths(G,w,s)
I topologically sort G
initialize graph from s
for each u in V in topological order
for each v in G.Adj[u]
Relax(u,v,w)

Directed Acyclic Graphs

Runtime: O(|V| + |E|)

Correctness:

Prove i1t!

Directed Acyclic Graphs

I Correctness:

I By definition of topological order,
When relaxing vertex v, we have
already relaxed any preceding
vertices

Directed Acyclic Graphs

So by relaxation property 5, we have
found the shortest path to all v

I Create FIFO queue to explore
I unvisited nodes

BES (unweighted graphs)

] ' i)
3
2 3
» 5
4 5 i
] ° o

O 0™ 0 0™ o0 o
D ¢ Q o O

Dijkstra

Dijkstra's algorithm is the BFS

equivalent for non-negative weight

graphs

USA [~ .

- g [, c A
e s AT P
A HELEMA
& o
g BOSE S an
5
A 5 il
CARSOM CITY a0
il)2
TErcramento SALT LAME CImy @ CHEVEMME
i MDENVER
i}
15
A
= &SANTA FE
] 7 -
e, A FHOENIX ¥,
- = Z7
-
~ o ™ i, 10
N OR <l gl i
= = . R 20
= A e EE .
AC .
0OcEAN “ :
i
= ~ p -
= M E X I C o ., .
1
.
e ¥ “
| . 1
= e i
ALASHA | =
58] -
JUNEAL =
.

N A D T
] \
i
ST " L) Bl
: a1
2 r 5
Thyt | AlEUSTA
- # MaTEELER
BISMARCK 3
& : WCEMCORD
B p BOSTON
j,_:um” - T
pAnE t ACERRT] AT LD EHCE
r ™ @HARTFGRD
2 = Bey
80 TRENTON
ARERURGT L
i I FAROLIS
DS WS ia
& LN be | 5 cc‘_guaus R
Ak] -
SPRIMGEERD T Mhyniapeious 1 7S ¥ TWASHINGTON D.C
TOPERA b O AFARLESTEN 3 1
o £ e TACHMON
15 34 JEFFERGONCITY| = FRANRFURT 2
33 s & p
Ly e Rﬁa_r_nsu-
ad 0 + =
¥ NHASMVILLE &
26 [TY 1
A i 54 o
el Al Aol UmEiA
E:ﬁauumn - [E LT e
[LITFLE ROCK - F
20
. k'
35 L1 ¥ .
o JACHION - f
s & MONTGOMERY MORTH
ATLAMNMTIC
i g B O Asssk :
ALETIM 1 EATOR. 3 L o e OCEARN
¥ ROUGE
5 = by
+ 4
G Mational Capital
' - State & Provincial Capital
5 4q

Interstate Highway Number w

International Boundary

State & Provincial Boundary

Intarstate Highway Metwaork Map not 1a Scare

State and Other Highways Coprright © 2012-13 weew.maapsolworid.c
X i

I Dijkstra

Dijkstra(G,w,s)
I initialize G from s
Q=G.V, S =empty

while Q not empty
u = Extract-min(Q) |
S=SU {u} S optional

for each v int G.Adj[u]
relax(u,v,w)

D(3)=1 D(5)=2 D(3)=1 D(5)=2

(e) Node 2 selected () Node 5 selected

1
D(3)=1 D(5)=2 D(3)=1 D(5)=2
(g) Node 4 selected (h) Shortest path found

I Dijkstra

Runtime?

I Dijkstra

Runtime:

I Extract-min() run |V| times
Relax runs Decrease-key() |E| times
Both take O(lg n) time

So O((|V| + |E)) lg |V]|) time
(can get to O(|V|lg|V| + E) using
Fibonacci heaps)

Runtime note:

I [f G is almost fully connected,
E|~ [V

Dijkstra

Use a simple array to store v.d
Extract-min() = O(|V|)
Decrease-key() = O(1)

total: O(|V|* + E)

I Dijkstra

Correctness: (p.660)
I Sufficient to prove when u added to

S, u.d = o(s,u)
Base: s added to S first, s.d=0=0(s,s)

Termination: Loop ends after Q is
empty, so V=S and we done

I Dijkstra

Step: Assume v in S has v.d = 6(s,v)
I Let y be the first vertex outside S
on path of 6(s,u)

We know by relaxation property 4,
that o(s,y)=y.d (optimal sub-structure)

y.d = 0(s,y) < 0(s,u) < u.d, as w(p)>0

I Dijkstra

Step: Assume v in S has v.d = 6(s,v)
I But as u was picked before vy,
u.d <y.d, combined with y.d <u.d

y.d=u.d

Thus y.d = o(s,y) = o(s,u) = u.d

