
  

Unweighted directed graphs



  

Announcements

Midterm & gradescope
- will get an email today to register

(username name is your email)
- tests should appear by next Monday

(nothing there now)



  

Graph

A directed graph G is a set of edges
and vertices: G = (V, E)

Two common ways to represent
a graph:
-Adjacency matrix
-Adjacency list

a b

c d



  

Graph

An adjacency matrix has a 1 in row i
and column j if you can go from
node i to node j



  

Graph

An adjacency list just makes lists
out of each row (list of edges out
from every vertex)



  

Graph

Difference between adjacency matrix
and adjacency list?



  

Graph

Difference between adjacency matrix
and adjacency list?

Matrix is more memory O(|V|2),
less computation: O(1) lookup

List is less memory O(E+V) if sparse,
more computation: O(branch factor)



  

Graph

Adjacency matrix, A=A1, represents
the number of paths from row node
to column node in 1 step

Prove: An is the number of paths
from row node to column node in
n steps



  

Graph

Proof: Induction
Base: A0 = I, 0 steps from i is i
Induction: (Assume An, show An+1)
Let an

i,j
 = ith row, jth column of An

Then an+1
i,j
 = ∑

k
 an

i,k
 a1

k,j

This is just matrix multiplication



  

Breadth First Search Overview

Create first-in-first-out (FIFO) queue 
to explore unvisited nodes

https://www.youtube.com/watch?v=nI0dT288VLs



  

Consider the graph below

Suppose we wanted to get from “a”
to “c” using breadth first search 

Breadth First Search Overview



  

BFS Overview

To keep track of which
nodes we have seen, we will do:

White nodes = never seen before
Grey nodes = nodes in Q
Black nodes = nodes that are done
To keep track of who first saw nodes 
I will make red arrows (π in book)



  

BFS Overview

First, we add the start
to the queue, so Q = {a}

Then we will repeatedly take the
left-most item in Q and add all of its
neighbors (that we haven't seen yet)
to the Q on the right



  

BFS Overview

Q = {a}
Left-most = a
White neighbors = b & d
New Q = {b, d}



  

BFS Overview

Q = {b, d}
Left-most = b
White neighbors = e
New Q = {d, e}



  

BFS Overview

Q = {d, e}
Left-most = d
White neighbors = c & f & g
New Q = {e, c, f, g}



  

BFS Overview

Q = {e, c, f, g}
Left-most = e
White neighbors = (none)
New Q = {c, f, g}



  

BFS Overview

Q = {c, f, g}
Left-most = c
Done! We found c, backtrack on
red arrows to get path from “a”



  

Depth First Search Overview

Create first-in-last-out (FILO) queue 
to explore unvisited nodes



  

You can solve mazes by putting
your left-hand on the wall and
following it

(i.e. left turns
at every
intersection)

Depth First Search Overview



  

You can solve mazes by putting
your left-hand on the wall and
following it

(i.e. left turns
at every
intersection)

Depth First Search Overview



  

This is actually just depth first search
(add nodes to the “right” first)

Depth First Search Overview

A

B

C

D

EF

G H
I

J



  

Q = {A}
Right most = A
White neighbors = {B}
New Q = {B}

Depth First Search Overview



  

Q = {B}
Right most = B
White neighbors = {C, D}
New Q = {C, D}

Depth First Search Overview



  

Q = {C, D}
Right most = D
White neighbors = {H, E}
New Q = {C, H, E}

Depth First Search Overview



  

Q = {C, H, E}
Right most = E
White neighbors = {F, G}
New Q = {C, H, F, G}

Depth First Search Overview



  

Q = {C, H, F, G}
Right most = G
White neighbors = {}
New Q = {C, H, F}

Depth First Search Overview



  

Q = {C, H, F}
Right most = F
White neighbors = {}
New Q = {C, H}

Depth First Search Overview



  

Q = {C, H}
Right most = H
White neighbors = {I, J}
New Q = {C, I, J}

Depth First Search Overview



  

Q = {C, I, J}
Right most = J

J is exit, we are done

Depth First Search Overview



  

BFS and DFS in trees

Solve problems by making a tree
of the state space

max

min

max



  

BFS and DFS in trees

Often times, fully exploring the state 
space is too costly (takes forever)

Chess: 1047 states (tree about 10123)
Go: 10171 states (tree about 10360)
At 1 million states per second...
Chess: 10109 years (past heat death
Go: 10346 years   of universe)



  

BFS and DFS in trees

BFS prioritizes “exploring”
DFS prioritizes “exploiting”

White to move Black to move



  

BFS and DFS in trees

BFS benefits?

DFS benefits?



  

BFS and DFS in trees

BFS benefits?
-if stopped before full search, can

evaluate best found

DFS benefits?
-uses less memory on complete

search



  

BFS and DFS in graphs

BFS: shortest path from origin to any
node

DFS: find graph structure

Both running time of O(V+E)



  

Breadth first search
BFS(G,s) // to find shortest path from s
for all v in V

v.color=white, v.d=∞,v.π=NIL
s.color=grey, v.d=0
Enqueue(Q,s)
while(Q not empty)

u = Dequeue(Q,s)
for v in G.adj[u]

if v.color == white
v.color=grey, v.d=u.d+1, v.π=u
Enqueue(Q,v)

u.color=black



  

Breadth first search

Let δ(s,v) be the shortest path
from s to v

After running BFS you can find this
path as: v.π to (v.π).π to ... s

(pseudo code on p. 601, recursion)



  

BFS correctness

Proof: contradiction
Assume δ(s,v) ≠ v.d
v.d > δ(s,v) (Lemma 22.2, induction)
Thus v.d > δ(s,v)
Let u be previous node on δ(s,v)
Thus δ(s,v) = δ(s,u)+1
and δ(s,u) = u.d
Then v.d > δ(s,v) = δ(s,u)+1 = u.d+1



  

BFS correctness

v.d > δ(s,v) = δ(s,u)+1 = u.d+1
Cases on color of v when u dequeue,

all cases invalidate top equation
Case white: alg sets v.d = u.d + 1
Case black: already removed
thus v.d < u.d (corollary 22.4)
Case grey: exists w that dequeued v,
v.d = w.d+1 < u.d+1 (corollary 22.4)



  

Depth first search

DFS(G)
for all v in V

v.color=white, v.π=NIL
time=0
for each v in V

if v.color==white
DFS-Visit(G,v)



  

Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]

if v.color == white
v.π=u
DFS-Visit(G,v)

u.color=black, time=time+1, u.f=time



  

Depth first search

Edge markers:

Consider edge u to v
C = Edge to black node (u.d > v.f)
B = Edge to grey node (u.f <  v.f)
F = Edge to black node (u.f > v.f)



  

Depth first search

DFS can do topographical sort

Run DFS, sort in decreasing finish time



  

Weighted graphs



  

Weighted graph

Edges in weighted graph are assigned 
a weight: w(v

1
, v

2
), v

1
, v

2
 in V

If path p = <v
0
, v

1
, ... v

k
> then the

weight is: w(p) = ∑k
i=0

(v
i-1

,v
i
) 

Shortest Path:
δ(u,v): min{w(p) : v

0
=u,v

k
=v)}



  

Shortest paths

Today we will look at single-source
shorted paths

This finds the shortest path from
some starting vertex, s, to any other
vertex on the graph (if it exists)

This creates G
π
, the shortest path tree



  

Shortest paths

Optimal substructure: Let δ(v
0
,v

k
)=p,

then for all 0 < i < j < k, δ(v
i
,v

j
)=p

i,j
=

<v
i
, v

i+1
, ... v

j
>

Proof?

Where have we seen this before?



  

Shortest paths

Optimal substructure: Let δ(v
0
,v

k
)=p,

then for all 0 < i < j < k, δ(v
i
,v

j
)=p

i,j
=

<v
i
, v

i+1
, ... v

j
>

Proof?  Contradiction!
Suppose w(p'

i,j
) < p(

i,j
), then let

p'
0,k

 = p
0,i

 p'
i,j
 p

j,k
 then w(p'

0,k
) < w(p)



  

Relaxation

We will only do relaxation on the 
values v.d (min weight) for vertex v

Relax(u,v,w)
if(v.d > u.d + w(u,v))

v.d = u.d+w(u,v)
v.π=u



  

Relaxation

We will assume all vertices start with
v.d=∞,v.π=NIL except s, s.d=0

This will take O(|V|) time

This will not effect the asymptotic 
runtime as it will be at least O(|V|) to 
find single-source shortest path



  

Relaxation

Relaxation properties:
1. δ(s,v) < δ(s,u) + δ(u,v) (triangle inequality)
2. v.d > δ(s,v), v.d is monotonically decreasing
3. if no path, v.d =δ(s,v) =∞
4. if δ(s,v), when (v.π).d=δ(s,v.π) then

relax(v.π,v,w) causes v.d=δ(s,v)
5. if δ(v

0
,v

k
) = p

0,k
, then when relaxed in

order (v
0
, v

1
), (v

1
, v

2
), ... (v

k-1
,v

k
) then

v
k.d

=δ(v
0
,v

k
) even if other relax happen

6. when v.d=δ(s,v) for all v in V, G
π
 is shortest

path tree rooted at s 



  

Directed Acyclic Graphs

DFS can do topological sort (DAG)

Run DFS, sort in decreasing finish time



  

DAG-shortest-paths(G,w,s)
topologically sort G
initialize graph from s
for each u in V in topological order

for each v in G.Adj[u]
Relax(u,v,w)

Runtime:  O(|V| + |E|)

Directed Acyclic Graphs



  

Depth first search



  

Correctness:

Prove it!

Directed Acyclic Graphs



  

Correctness:
By definition of topological order,
When relaxing vertex v, we have
already relaxed any preceding
vertices

So by relaxation property 5, we have
found the shortest path to all v

Directed Acyclic Graphs



  

BFS (unweighted graphs)

Create FIFO queue to explore 
unvisited nodes



  

Dijkstra

Dijkstra's algorithm is the BFS 
equivalent for non-negative weight
graphs



  

Dijkstra

Dijkstra(G,w,s)
initialize G from s
Q = G.V, S = empty
while Q not empty

u = Extract-min(Q)
S = S U {u}
for each v int G.Adj[u]

relax(u,v,w)

S optional



  

Dijkstra



  

Dijkstra

Runtime? 



  

Dijkstra

Runtime:
Extract-min() run |V| times
Relax runs Decrease-key() |E| times
Both take O(lg n) time

So O( (|V| + |E|) lg |V|) time
(can get to O(|V|lg|V| + E) using 
Fibonacci heaps)



  

Dijkstra

Runtime note:
If G is almost fully connected,
|E| ≈ |V|2

Use a simple array to store v.d
Extract-min() = O(|V|)
Decrease-key() = O(1)
total: O(|V|2 + E)



  

Dijkstra

Correctness: (p.660)
Sufficient to prove when u added to
S, u.d = δ(s,u)

Base: s added to S first, s.d=0=δ(s,s)

Termination: Loop ends after Q is
empty, so V=S and we done



  

Dijkstra

Step: Assume v in S has v.d = δ(s,v)
Let y be the first vertex outside S
on path of δ(s,u)

We know by relaxation property 4,
that δ(s,y)=y.d (optimal sub-structure)

y.d = δ(s,y) < δ(s,u) < u.d, as w(p)>0



  

Dijkstra

Step: Assume v in S has v.d = δ(s,v)
But as u was picked before y,
u.d < y.d, combined with y.d < u.d

y.d=u.d

Thus y.d = δ(s,y) = δ(s,u) = u.d 


