I Unweighted directed graphs




Announcements

Midterm & gradescope

- will get an email today to register
(username name is your email)

- tests should appear next Tuesday
(nothing there now)



I Graph

A directed graph G is a set of edges
I and vertices: G = (V, E)

Two common ways to represent
a graph:
-Adjacency matrix
-Adjacency list




I Graph

An adjacency matrix has a 1 in row i
I and column j if you can go from
node 1 to node j
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I Graph

An adjacency list just makes lists
I out of each row (list of edges out
from every vertex)
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I Graph

Ditference between adjacency matrix
I and adjacency list?



Graph

Ditference between adjacency matrix
and adjacency list?

Matrix is more memory O(|V/|%),
less computation: O(1) lookup

List is less memory O(E+V) if sparse,
more computation: O(branch factor)



I Graph

Adjacency matrix, A=A', represents
I the number of paths from row node
to column node in 1 step

Prove: A" is the number of paths

from row node to column node in
n steps



I Graph

Proof: Induction
I Base: A° =1, O steps from i is i
Induction: (Assume A", show A™)
Leta" . = i"row, j* column of A"
n+tl — n 1
Then a ST At A

This is just matrix multiplication



Create first-in-first-out (FIFO) queue
I to explore unvisited nodes

Breadth First Search Overview
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https://www.youtube.com/watch?v=nl0dT288VLs



Breadth First Search Overview

Consider the graph below

Suppose we wanted to get from “a”

(P

to “c” using breadth first search




I BFS Overview f{_ #*

| e
To keep track ot which ONRO

I nodes we have seen, we will do:

White nodes = never seen before
Grey nodes = nodes in QQ

Black nodes = nodes that are done
To keep track of who first saw nodes
I will make red arrows (7 in book)



I BFS Overview

| e
First, we add the start ONRO

I to the queue, so Q = {a}

Then we will repeatedly take the
left-most item in QQ and add all of its
neighbors (that we haven't seen yet)
to the Q on the right



I BES Overview

Q=1a}
[.eft-most = a
White neighbors = b & d

New Q = {b, d}




I BES Overview

Q= 1b, d;
Left-most = b
White neighbors = e

New Q = {d, e}




I BES Overview

Q=1d, e}
Left-most = d
White neighbors =c &t & g

Ner {e I, g}




I BES Overview

Q=1e0t, g}
Left-most = e
White neighbors = (none)

Ner {c f, g}




I BES Overview

Q={ct, g}
Left-most = C
Done! We found c, backtrack on

red arrows to get path from “a”
>




I Create first-in-last-out (FILO) queue
I to explore unvisited nodes

Depth First Search Overview



I You can solve mazes by putting
I your left-hand on the wall and
following it

Depth First Search Overview

(i.e. left turns
at every
intersection)



I You can solve mazes by putting
I your left-hand on the wall and
following it 7
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Depth First Search Overview

(i.e. left turns
at every
intersection)




Depth First Search Overview

This is actually just depth first search

e

@%‘T_T’




I BFS and DEFS in trees

Solve problems by making a tree
I of the state space %0
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BFS and DEFS in trees

Often times, fully exploring the state
space is too costly (takes forever)

Chess: 10% states (tree about 10'+°)
Go: 10'"! states (tree about 10°°)
At 1 million states per second...
Chess: 10'° years (past heat death
Go: 10°* years  of universe)



I BFS and DEFS in trees

BEFS prioritizes “exploring”
I DFS prioritizes “exploiting”
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I BFS and DEFS in trees

BFS benefits?

DES benefits?



I BFS and DEFS in trees

BES benefits?
I -if stopped before full search, can
evaluate best found

DES benefits?

-uses less memory on complete
search



I BES and DFS in graphs

BFS: shortest path from origin to any
I node

DFS: find graph structure

Both running time of O(V+E)



I Breadth first search

I BFS(G,s) // to find shortest path from s
forallvinV
I v.color=white, v.d=oo,v.n=NIL
s.color=grey, v.d=0
Enqueue(Q),s)
while(QQ not empty)
u = Dequeue(Q),s)
for v in G.adj[u]
if v.color == white
v.color=grey, v.d=u.d+1, v.n=u
Enqueue(Q,v)
u.color=Dblack



I Breadth first search

Let 0(s,v) be the shortest path
fromstov

After running BFS you can find this
path as: v.it to (v.mm).mto ... S

(pseudo code on p. 601, recursion)



Proof: contradiction
I Assume 0o(s,v) # v.d
v.d > 0(s,v) (Lemma 22.2, induction)
Thus v.d > 0(s,V)
Let u be previous node on 0(s,v)
Thus 0(s,v) = o(s,u)+1
and o(s,u) = u.d
Then v.d > o6(s,v) = o(s,u)+1 = u.d+1

BFES correctness



I BFES correctness

I v.d > 0(s,v) = o(s,u)+1 = u.d+1
I Cases on color of v when u dequeue,
all cases invalidate top equation

Case white: alg sets v.d = u.d + 1
Case black: already removed
thus v.d < u.d (corollary 22.4)
Case grey: exists w that dequeued v,
v.d = w.d+1 <u.d+1 (corollary 22.4)



Depth first search

DFS can be implemented with BFS

We will mark both a start (colored
orey) and finish (colored black) times

This helps us quantify properties
of graphs



Depth first search

DFS(G)

forallvinV
v.color=white, v.m=NIL

time=0

foreachvinV

if v.color==white
DFS-Visit(G,v)



Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]
if v.color == white

V.T=u

DFS-Visit(G,v)
u.color=black, time=time+1, u.f=time



I Edge markers

A

Con51der edge utov

B = Edge to grey node (u.f < v.f)
F = Edge to black node (u.f > v.f)
C = Edge to black node (u.d > v.f)

Depth first search



Depth first search
DFS can do topographlcal sort
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Run DFS, sort in decreasing finish time



Depth first search

DEFS can find strongly connected
components




Depth first search

Let G' be G with edges reversed

Then to get strongly connected:

1. DFS(G) to get finish times

2. Compute G*

3. DFS(G') on vertex in decreasing
finish time

4. Each tree in forest SC component



