I Unweighted directed graphs

Announcements

Midterm & gradescope

- will get an email today to register
(username name is your email)

- tests should appear next Tuesday
(nothing there now)

I Graph

A directed graph G is a set of edges
I and vertices: G = (V, E)

Two common ways to represent
a graph:
-Adjacency matrix
-Adjacency list

I Graph

An adjacency matrix has a 1 in row i
I and column j if you can go from
node 1 to node j

o
/
©

—k = ~k = —k M

o |l = ||l =|a
o|lo|lo|lo| ol m

= o = —k =k (¥

= = = = = =k

I Graph

An adjacency list just makes lists
I out of each row (list of edges out
from every vertex)

. &

1
2 F» 3 |1
3

3

@ 1 0 |1 |1
‘\ 23001
@ 31010

4 {0 |00

510 (110

@ 4 = 4 | |
5 L= 2 | /

= = = = = on

I Graph

Ditference between adjacency matrix
I and adjacency list?

Graph

Ditference between adjacency matrix
and adjacency list?

Matrix is more memory O(|V/|%),
less computation: O(1) lookup

List is less memory O(E+V) if sparse,
more computation: O(branch factor)

I Graph

Adjacency matrix, A=A', represents
I the number of paths from row node
to column node in 1 step

Prove: A" is the number of paths

from row node to column node in
n steps

I Graph

Proof: Induction
I Base: A° =1, O steps from i is i
Induction: (Assume A", show A™)
Leta" . = i"row, j* column of A"
n+tl — n 1
Then a ST At A

This is just matrix multiplication

Create first-in-first-out (FIFO) queue
I to explore unvisited nodes

Breadth First Search Overview

] ' i)
3
2 3
» 5
4 5 .
’ v) ’ vi] o

O 0™ 0 0™ o0 o
D ¢ Q o O

https://www.youtube.com/watch?v=nl0dT288VLs

Breadth First Search Overview

Consider the graph below

Suppose we wanted to get from “a”

(P

to “c” using breadth first search

I BFS Overview f{_ #*

| e
To keep track ot which ONRO

I nodes we have seen, we will do:

White nodes = never seen before
Grey nodes = nodes in QQ

Black nodes = nodes that are done
To keep track of who first saw nodes
I will make red arrows (7 in book)

I BFS Overview

| e
First, we add the start ONRO

I to the queue, so Q = {a}

Then we will repeatedly take the
left-most item in QQ and add all of its
neighbors (that we haven't seen yet)
to the Q on the right

I BES Overview

Q=1a}
[.eft-most = a
White neighbors = b & d

New Q = {b, d}

I BES Overview

Q= 1b, d;
Left-most = b
White neighbors = e

New Q = {d, e}

I BES Overview

Q=1d, e}
Left-most = d
White neighbors =c &t & g

Ner {e I, g}

I BES Overview

Q=1e0t, g}
Left-most = e
White neighbors = (none)

Ner {c f, g}

I BES Overview

Q={ct, g}
Left-most = C
Done! We found c, backtrack on

red arrows to get path from “a”
>

I Create first-in-last-out (FILO) queue
I to explore unvisited nodes

Depth First Search Overview

I You can solve mazes by putting
I your left-hand on the wall and
following it

Depth First Search Overview

(i.e. left turns
at every
intersection)

I You can solve mazes by putting
I your left-hand on the wall and
following it 7

E%‘T_}—’

Depth First Search Overview

(i.e. left turns
at every
intersection)

Depth First Search Overview

This is actually just depth first search

e

@%‘T_T’

I BFS and DEFS in trees

Solve problems by making a tree
I of the state space %0

O] X
X X's turn (MAX)
MaX——s ' —
_la—-—'—‘__ |-l q__‘_h___‘———uD
O[O X 00| X 010 X
X% X X | X
. 0| X O | X| X O|X
-1 +1 -1 0 0 +1
O[O X O|O|X O|0|X 0|0| X 00| X O|0|X
O | X| X X[X 0OX X0 X|X]|O b4 B
O(X 0| X|0 O | X| X O|X| X 0 X O|X|0
MaX=—— |, s |&§ s
0|0 X O|0| X 00| X O|0O|X
X | X| X X|X]|0 X[|X|O X | X | X
0| X|0 O|X|{X O|X|X 0|X|0

BFS and DEFS in trees

Often times, fully exploring the state
space is too costly (takes forever)

Chess: 10% states (tree about 10'+°)
Go: 10'"! states (tree about 10°°)
At 1 million states per second...
Chess: 10'° years (past heat death
Go: 10°* years of universe)

I BFS and DEFS in trees

BEFS prioritizes “exploring”
I DFS prioritizes “exploiting”

(?i? aﬁg Sl c (IBdie | = Nallle
- Al
-ﬁ- E Allgll c IDHE | F NG e |3

White to move Black to move

= MNOWw B N

I BFS and DEFS in trees

BFS benefits?

DES benefits?

I BFS and DEFS in trees

BES benefits?
I -if stopped before full search, can
evaluate best found

DES benefits?

-uses less memory on complete
search

I BES and DFS in graphs

BFS: shortest path from origin to any
I node

DFS: find graph structure

Both running time of O(V+E)

I Breadth first search

I BFS(G,s) // to find shortest path from s
forallvinV
I v.color=white, v.d=oo,v.n=NIL
s.color=grey, v.d=0
Enqueue(Q),s)
while(QQ not empty)
u = Dequeue(Q),s)
for v in G.adj[u]
if v.color == white
v.color=grey, v.d=u.d+1, v.n=u
Enqueue(Q,v)
u.color=Dblack

I Breadth first search

Let 0(s,v) be the shortest path
fromstov

After running BFS you can find this
path as: v.it to (v.mm).mto ... S

(pseudo code on p. 601, recursion)

Proof: contradiction
I Assume 0o(s,v) # v.d
v.d > 0(s,v) (Lemma 22.2, induction)
Thus v.d > 0(s,V)
Let u be previous node on 0(s,v)
Thus 0(s,v) = o(s,u)+1
and o(s,u) = u.d
Then v.d > o6(s,v) = o(s,u)+1 = u.d+1

BFES correctness

I BFES correctness

I v.d > 0(s,v) = o(s,u)+1 = u.d+1
I Cases on color of v when u dequeue,
all cases invalidate top equation

Case white: alg sets v.d = u.d + 1
Case black: already removed
thus v.d < u.d (corollary 22.4)
Case grey: exists w that dequeued v,
v.d = w.d+1 <u.d+1 (corollary 22.4)

Depth first search

DFS can be implemented with BFS

We will mark both a start (colored
orey) and finish (colored black) times

This helps us quantify properties
of graphs

Depth first search

DFS(G)

forallvinV
v.color=white, v.m=NIL

time=0

foreachvinV

if v.color==white
DFS-Visit(G,v)

Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]
if v.color == white

V.T=u

DFS-Visit(G,v)
u.color=black, time=time+1, u.f=time

I Edge markers

A

Con51der edge utov

B = Edge to grey node (u.f < v.f)
F = Edge to black node (u.f > v.f)
C = Edge to black node (u.d > v.f)

Depth first search

Depth first search
DFS can do topographlcal sort

11/16 @ndarshnns)‘ sﬁcks 17/18
12/15 | pants

shoes) 13/14

(a)

v D ()) o) (e @ e o) =)

17/18 11/16 12/15 13/14 S/10 2{5 34

Run DFS, sort in decreasing finish time

Depth first search

DEFS can find strongly connected
components

Depth first search

Let G' be G with edges reversed

Then to get strongly connected:

1. DFS(G) to get finish times

2. Compute G*

3. DFS(G') on vertex in decreasing
finish time

4. Each tree in forest SC component

