

String matching

1

Announcements

Programming assignment
extended to Thursday

2

Prefix vs suffix

w is a prefix of x=w [x, means exists
y s.t. wy = x (also implies |w| < |x|)
(w] y = w is a suffix of x)

An easy way to remember prefix vs
suffix is: prefix = [, which looks like
beginning of an array (similar suffix)

3

Finite Automata

A finite automata has 5 parts:
(1) A set of states Q
(2) An initial state q

0

(3) Some accepting states, A subset Q
(4) An alphabet, ∑
(5) A transition function δ, from

Q x ∑ to Q, namely δ(q,a)=σ(P
q
a)

4

Finite Automata

Let σ(x) = max {k : P
k
] x}

So σ is the longest prefix of P that is
also a suffix of x:

P = {a, b, a, a, b, c, a}
σ(b a a c b a b) = 2 (all longer bad)

5

Finite Automata

Compute-Transition-Function(P, ∑)
for q = 0 to |P|

for each a in ∑
k = min(|P|, q+1)//end P or q
while: not P

k
] P

q
a

k = k – 1
δ(q,a) = k // runtime?

6

Finite Automata

O(|P|3|∑|), but can get to O(|P| |∑|)
if smart

|P| - outside loop
|∑| - outside loop
|P| - repeat runs at most |P| times
|P| - P

k
] P

q
a checks O(|P|) chars

7

Finite Automata

Finite-Automaton-Matcher(T,δ,|P|)
q=0 // q is state
for i = 1 to |T|

q = δ(q,T[i])
if q == |P|

print ''Pattern occurs at shift'' i-|P|

Runtime = O(|T|)

8

Finite Automata

 1, 2, 3, 4, 5, 6, 7
P = {a, b, a, a, b, c, a}, then δ is:

0 1 2 3 4 5 6 7
a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

(see FAsigma.py)

9

Finite Automata
0 1 2 3 4 5 6 7

a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

S = {a, b, c, a, b, a, a, b, c, a, c, a}
Start 0, see S

1
='a', goto 1...

At 1, see S
2
='b', goto 2...

At 2, see S
3
='c', goto 0...

At 0, see S
4
='a', goto 1...

10

Finite Automata
0 1 2 3 4 5 6 7

a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

S = {a, b, c, a, b, a, a, b, c, a, c, a}
At 1, see S

5
='b', goto 2...

At 2, see S
6
='a', goto 3...

At 3, see S
7
='a', goto 4...

At 4, see S
8
='b', goto 5...

11

Finite Automata
0 1 2 3 4 5 6 7

a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

S = {a, b, c, a, b, a, a, b, c, a, c, a}
At 5, see S

9
='c', goto 6...

At 6, see S
10

='a', goto 7... MATCH!
At 7, see S

11
='a', goto 1...

At 1, see S
12

='c', goto 0...

12

Finite Automata
0 1 2 3 4 5 6 7

a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

S = {a, b, c, a, b, a, a, b, c, a, c, a}
At 0, see S

13
='a', goto a...

Done, one match found ending at
S

10
 (so match starts S

4
)

13

Finite Automata

You try it!

P={a, b, a, a}
S={a, a, b, a, c, a, a, b, a, a, b, a, a, a}

What is automata?
Where are matches?

14

FA correctness

Lemma 32.2: σ(xa) < σ(x) + 1
Obvious...

15

If x] z and y] z, then:
(a) If |x| < |y|, x] y
(b) If |y| < |x|, y] x
(c) If |x| = |y|, x = y

FA correctness
16

Lemma 32.3: if q=σ(x),
then σ(xa)=σ(P

q
a)

Proof:
P

q
] x by def of q=σ(x), then P

q
a] xa

Let r=σ(xa) then P
r
] xa and r < q+1

So |P
r
| < |P

q
a| means P

r
] P

q
a

σ(xa)<σ(P
q
a),

P
q
a] xa, so also σ(P

q
a)<σ(xa), thus equal

FA correctness
17

Theorem 32.4: if Φ is the final-state
function, then Φ(T

i
) = σ(T

i
)

Base: T
0
 = ε, so Φ(T

0
)=0=σ(T

0
)

Induction: Φ(T
i+1

) = Φ(T
i
a) =

δ(Φ(T
i
),a) = σ(P

q
a) = σ(T

i
a) =

σ(T
i+1

), where q=Φ(T
i
)

FA correctness
18

Knuth-Morris-Pratt

Faster computation by using
pattern symmetries within itself
(vs transitions for each char/state)

The function π does this, namely
π(q) = max(k : k < q and P

k
] P

q
)

Namely, π finds shifts of P on itself

19

Knuth-Morris-Pratt
20

Knuth-Morris-Pratt

(See: FAsigma.py ... again)

i 1 2 3 4 5 6 7
P[i] a b a a b c a
π(i) 0 0 1 1 2 0 1

21

Knuth-Morris-Pratt

KMP-Matcher(T,P,π) // runtime?
q = 0
for i = 1 to |T|

while q > 0 and P[q+1] ≠ T[i]
q = π[q]

if P[q+1] == T[i], then q = q+1
if q == |P|

match found, and set q = π[q]

22

Knuth-Morris-Pratt

The while loop decreases q, so it can
only run as many times as q increases

q increases only if match in T, so
at most |T| times

O(|T| + |T|) = O(|T|)
(why not |T|*|T|?)

23

Knuth-Morris-Pratt

Compute-Prefix-Function(P)
k = 0, π[1] = 0
for q = 2 to |P|

while k > 0 and P[k+1] ≠ P[q]
k = π[k]

if P[k+1] == P[q]
k = k+1

π[q]=k // Runtime = O(|P|)

24

KMP correctness

Let π*[q] = {π[q], π[π[q]], ... 0}
Lemma 32.5: π*[q] = {k : k < q and
P

k
] P

q
 }

Remember:
π(q) = max(k : k < q and P

k
] P

q
),

so fairly obvious (see next slide)
(Tip: prove 2 sets equal by showing
A subset B and B subset A)

25

KMP correctness

π*[8] = {6,4,2,0}

26

KMP correctness
Lemma 32.6: if π[q] > 0, then
π[q]-1 in π*[q-1]
Proof: π[q] < q and P

π[q]
] P

q
, so

π[q] – 1 < q – 1 and P
π[q]-1

] P
q-1

 (we
know π[q] > 0, so we can drop a char)
Previous lemma says: π*[q] = {k :
k < q and P

k
] P

q
 }, above let q=q-1,

k=π[q]-1, then done

27

KMP correctness

Let E
q-1

={k in π*[q-1] : P[k+1]=P[q]}
Corollary 32.7: π[q] = {0 or
1+max{k in E

q-1
} if E

q-1
 not empty}

Proof:
Case 1: E

q-1
 empty, no match, so 0

Case 2: By def of E
q-1

, k+1 < q and
P

k+1
]P

q
 implies π[q]>1+max{k in E

q-1
}

28

KMP correctness

(E
q-1

={k in π*[q-1] : P[k+1]=P[q]})
Case 2 (cont): π[q]>1+max{k in E

q-1
}

Let r = π[q] – 1, then P
r+1

] P
q
 so

P[r+1] = P[q]. Lemma 32.6 says
r in π*[q-1], so r in E

q-1
.

Thus π[q]<1+max{k in E
q-1

}
Thus π[q]=1+max{k in E

q-1
}

29

KMP correctness

k=π[q-1] at the start of the for loop
in Compute-Prefix-Function alg
The while loop finds max{k in E

q-1
}

and adds one for Corollary 32.7

If there k=0, then either the max was
0 and it will be incremented to 1
or no match and will stay 0

30

KMP correctness

KMP alg correctness (map to FA alg):
Base: both start with q=0
Step (q'=σ(T

i-1
)):

Case σ(T
i
)=0: q=0 and same

Case σ(T
i
)=q'+1: while does not run,

then increases q, so q=q'+1=σ(T
i
)

(continued)

31

KMP correctness

Step: q'=σ(T
i-1

), Case 0<σ(T
i
)<q':

while loop terminates when
P[q+1]=T[i], so q+1 = σ(P

q'
T[i])

=σ(T
i-1

T[i])
=σ(T

i
), then q is incremented so...

q=σ(T
i
)

32

