

Greedy algorithms

Announcements

Programming assignment 1 posted
- need to submit a .sh file

The .sh file should just contain
what you need to type to
compile and run your program
from the terminal

Greedy algorithms

Find the best solution to a local
problem and (hope) it solves the
global problem

Greedy algorithm

Greedy algorithms find the global
maximum when:
1. optimal substructure – optimal

solution to a subproblem is a
optimal solution to global problem

2. greedy choices are optimal
solutions to subproblems

Activity selection

A list of tasks with start/finish times

Want to finish most number of tasks

How to find?

Activity selection

Optimal substructure:
Finding the largest number of tasks

that finish before time t can be
combined with the largest number
of tasks that start after time t

Activity selection

Greedy choice:
The task that finishes first is in a

optimal solution

Proof:
Suppose we have optimal solution

A. If quickest finishing task in A,
done. Otherwise we can swap it in.

Activity selection

Greedy: select earliest finish time

Knapsack problem

A list of items with their values, but
your knapsack has a weight limit

Goal: put as much value as you can
in your knapsack

Knapsack problem

What is greedy choice?

Knapsack problem

What is greedy choice?

A: pick the item with highest value
to weight ratio (value/weight)
(only optimal if fractions allowed)

Knapsack problem

If you have to choose full items,
the constraint of the fixed backpack
size is infeasible for greedy solutions

Huffman code

Who has used a zip/7z/rar/tar.gz?

Compression looks at the specific
files you want to compress and
comes up with a more efficient
binary representation

Huffman code

How many letters in alphabet?
How many binary digits do we need?

If we are given a specific set of
letters, we can have variable length
representations and save space:
aaabaaabaa : a=0,b=1->0001000100
or :aaab=1,a=0 -> 1100

Huffman code

Huffman code uses variable size
letter representation compress binary
representation on a specific file

letter: a b c d e
count: 15 7 6 6 5

What is greedy choice?

Huffman code

We want longer representations for
less frequently used letters

Greedy choice: Find least frequently
used letters (or group of letters)
and assign them an extra 1/0

Repeat until all letters unique encode

Huffman code

1. Merge least
frequently used nodes
into a single node
(usage is sum)

2. Repeat until
all nodes on a tree

Huffman code

1. Merge least
frequently used nodes
into a single node
(usage is sum)

2. Repeat until
all nodes on a tree

You try!

Huffman code

1. Merge least
frequently used nodes
into a single node
(usage is sum)

2. Repeat until
all nodes on a tree

Huffman code

Huffman coding length =
15 * 1 + 3 * 24 = 87

Original coding length =
15 * 3 + 3 * 24 = 117

25 percent compression

Dynamic programming

Greedy algorithms are closely
related to dynamic programming

Greedy solutions depend on an
optimal subproblem structure

Subproblem structure = recursion,
which can be expensive

Dynamic programming

Dynamic programming is turning
a recursion into a more efficient
iteration

Consider Fibonacci numbers

Dynamic programming

Using recursion leads to repeated
calculation: f(n) = f(n-1) + f(n-2)

Instead we can compute from the
bottom up:
L=0, C = 1
for 1 to n

N = C+L, L=C, C=N

Dynamic programming

You can often apply dynamic
programming to greedy solutions

Consider the longest “common
subsequence problem”:
A = {a, b, b, a, c, c, b, a}
B = {b, c, a, b, a, a, c, a}
Find most matches (in order)

Dynamic programming

Greedy recursive structure:
If end element the same, should
always pick

Otherwise, find recursively
comparing A with one less or B
with one less

String matching

String matching

Some pattern/string P occurs with
shift s in text/string T if:
for all k in [1, |P|]: P[k] equals T[s+k]
T
P

s=5

String matching

Both the pattern, P, and text, T, come
from the same finite alphabet, ∑.

empty string (“”) = ε

w is a prefix of x=w [x, means exists
y s.t. wy = x (also implies |w| < |x|)
(w] x = w is a suffix of x)

Prefix

w prefix of x means: all the first
letters of x are w
x
prefixes of x
suffixes of x

not
english!

Suffix

If x] z and y] z, then:
(a) If |x| < |y|, x] y
(b) If |y| < |x|, y] x
(c) If |x| = |y|, x = y

Dumb matching

Dumb way to find all shifts of P in T?
Check all possible shifts!

(see: naiveStringMatcher.py)
Run time?

Dumb matching

Dumb way to find all shifts of P in T?
Check all possible shifts!

(see: naiveStringMatcher.py)
Run time?
O(|P| |T|)

Rabin-Karp algorithm

A better way is to treat the pattern
as a single numeric number, instead
of a sequence of letters

So if P = {1, 2, 6} treat it as 126
and check for that value in T

Rabin-Karp algorithm

The benefit is that it takes a(n almost)
constant time to get the each number
in T by the following:
(Let t

s
 = T[s, s+1, ..., s+|P|])

t
s+1

 = d(t
s
 – T[s+1]h) + T[s+|P|+1]

where d = | ∑ |, h= d|P|-1

Rabin-Karp algorithm

Example: ∑ = {0, 1, ..., 9}, | ∑ | = 10
T = {1, 2, 6, 4, 7, 2}
P = {6, 4, 7}
t
0
 = 126

t
1
 = 10(126-T[0+1]103-1) +T[0+|P|+1]

t
1
 = 10(126-100) +T[0+3+1]

t
1
 = 264

Rabin-Karp algorithm

This is a constant amount of work
if the numbers are small...

So we make them small!
(using modulus/remainder)

Any problems?

Rabin-Karp algorithm

This is a constant amount of work
if the numbers are small...

So we make them small!
(using modulus/remainder)

Any problems?
x mod q=y mod q does not mean x=y

Hash functions

One way functions

Modulus is a one way function, thus
computing the modulus is easy but
recovering the original number is
hard/impossible

127 % 5 = 2, or 127 mod 5 = 2 mod 5
However if we want to solve x%5=2,
all we can say is x=2+5k or some k

Other one way functions?

One way functions

Other one way functions?
- multiplication
- hashing

Multiplication is famous, as it is easy:
200*50 = 10,000
... yet factoring is hard:
132773= 31 * 4283 (what alg?)

One way functions

Hashing is another commonly used
function for security/verification, as...

-fast (low computation)
-low collision chance
-cannot easily produce a specific

hash

One way functions

One way functions

Hash functions

Rabin-Karp algorithm

Larger q (for mod):
- larger numbers = more computation
- less frequent errors

There are trade-offs, but we often
pick q > |P| but not q >> |P|

Pick a prime number as q

Rabin-Karp algorithm
Kabin-Karp-Matcher(T,P,|∑|,q,)
d=|∑|, h=d|P|-1 mod q, p=0, t

0
 = 0

for i=1 to |P| // “preprocessing”
p = (dp + P[i]) mod q // for P
t
0
 = (dt

0
 + T[i]) mod q // for T

for s = 0 to |T| - |P|
if p == t

s
, check brute-force match at s

if s < |T| - |P| then compute t
s+1

Rabin-Karp algorithm

To compute t
s+1

:
t
s+1

=(d(t
s
-t[s+1]h)+T[s+|P|+1]) mod q

Rabin-Karp algorithm

Example: T = {1, 2, 5, 3, 5, 2, 6, 3}
P = {2, 5}, q = 5, assume base 10

Rabin-Karp algorithm

Example: T = {1, 2, 5, 3, 5, 2, 6, 3}
P = {2, 5}, q = 5, assume base 10
P = 25 mod 5 = 0, t

0
 = 12 mod 5 = 2

t
i+1

=10*(t
i
-T[i+1]*10)+T[i+|P|+1]%q

t
1
 = 25 mod 5 = 0, true match!

t
2
 = 53 mod 5 = 3,

t
3
 = 35 mod 5 = 0, false match

Rabin-Karp algorithm

T = {1, 2, 5, 3, 5, 2, 6, 3}, P = {2, 5}
t
5
 = 52 mod 5 = 2,

t
6
 = 26 mod 5 = 1,

t
7
 = 63 mod 5 = 3

t
i+1

=10*(t
i
-T[i+1]*10)+T[i+|P|+1]%q

So only s=1 is match

Rabin-Karp algorithm

Run time? (Average? Worst case?)

Rabin-Karp algorithm

Run time?
- “preprocessing” (first loop)= O(|P|)
- “matching” (second loop) = O(|T|)

So O(|T|+|P|) and as n>m, O(|T|) on
average

Worst case: always a match O(|T| |P|)

