Greedy algorithms

GREEDY decisions based on the local optimum

I.I""'-.
fx/ \r’x
,.r*-ﬁ_.-""'f \; ..r'-.r""f-" \‘\"-f'*-.
A e . G o .
{9

}"-..-"'{.-""-..r"n-. L W .}"'-.:"‘{}"-.f .r"-.-"{_.-"h..r’ ™

Programming assignment 1 posted
I - need to submit a .sh file

Announcements

The .sh file should just contain
what you need to type to
compile and run your program
from the terminal

Find the best solution to a local
I problem and (hope) it solves the
global problem

Greedy algorithms

I Greedy algorithm

Greedy algorithms find the global

maximum when:

1. optimal substructure — optimal
solution to a subproblem is a
optimal solution to global problem

2. greedy choices are optimal
solutions to subproblems

Activity selection

A list of tasks with start/finish times

Want to finish most number of tasks

How to find?

: : : g | : : : | : : : : : :
: ! : i & : i G] : : ! 5 ! : ! 5

]]] CEERC L a0 ar Ta o esys o L e T Em

Activity selection

Optimal substructure:

I Finding the largest number of tasks
that finish before time t can be
combined with the largest number
of tasks that start after time t

Activity selection

Greedy choice:
The task that finishes first is in a

optimal solution

Proof:

Suppose we have optimal solution
A. If quickest finishing task in A,
done. Otherwise we can swap it in.

Activity selection

Greedy: select earliest finish time

Knapsack problem

A list of items with their values, but
I your knapsack has a weight limit

Goal: put as much value as you can
in your knapsack

Knapsack problem
What is greedy choice?

Knapsack problem
What is greedy choice?

A pick the item with highest value
to weight ratio (value/weight)
(only optimal if fractions allowed)

Knapsack problem

[f you have to choose full items,
I the constraint of the fixed backpack
size 1s infeasible for greedy solutions

Huffman code

I Who has used a zip/7z/rar/tar.gz?
Compression looks at the specific
files you want to compress and
comes up with a more efficient
binary representation

Huffman code

How many letters in alphabet?
How many binary digits do we need?

If we are given a specific set of
letters, we can have variable length
representations and save space:
aaabaaabaa : a=0,b=1->0001000100
or :aaab=1,a=0 -> 1100

Huffman code

Huffman code uses variable size
I letter representation compress binary
representation on a specific file

letter:

a b c d e
count: 157 6 6 5

What is greedy choice?

Huffman code

We want longer representations for
less frequently used letters

Greedy choice: Find least frequently
used letters (or group of letters)

and assign them an extra 1/0

Repeat until all letters unique encode

1. Merge least

I frequently used nodes
into a single node
(usage is sum)

Huffman code

2. Repeat until
all nodes on a tree

1. Merge least

I frequently used nodes
into a single node You try!
(usage is sum)

Huffman code

2. Repeat until
all nodes on a tree

1. Merge least

I frequently used nodes
into a single node
(usage is sum)

Huffman code

2. Repeat until
all nodes on a tree

Huffman code

Huffman coding length =
15*1+3*24=87

Original coding length =
15*3+3*%24 =117

25 percent compression

Dynamic programming

Greedy algorithms are closely
I related to dynamic programming

Greedy solutions depend on an
optimal subproblem structure

Subproblem structure = recursion,
which can be expensive

Dynamic programming

Dynamic programming 1S turning
a recursion into a more efficient
1teration

Consider Fibonacci numbers

Dynamic programming

I Using recursion leads to repeated
I calculation: f(n) = f(n-1) + f(n-2)
Instead we can compute from the
bottom up:
L=0,C=1
for1ton

N = C+L, L=C, C=N

Dynamic programming

You can often apply dynamic
I programming to greedy solutions

Consider the longest “common
subsequence problem”:
A=1{a,b,b,a c c b, a}

B ={b, c,;a,;b, a, a, c, a}

Find most matches (in order)

Dynamic programming

Greedy recursive structure:
If end element the same, should
always pick

Otherwise, find recursively
comparing A with one less or B
with one less

String matching

LRSS
>»> import re

>»> r=re,compile(r"regexes\sCareldo)\s?(nfo’']t)?\s(funlboring)”, re.I)
»>» def is_match(x): return X is not None

>»> is_match(re.match(r, "Regexes are fun!!!"))

True

>»> is_match(re.match(r, "Regexes are not fun!!!"))

True

s>»> is_match(re.match(r, "Regexes aren't boring!!!"))

True

>»> is_match(re.match(r, "Obviously, regexes are boring."))
False

>»> is_match(re.search(r, "Obviously, regexes are boring."))
True

I String matching

Some pattern/string P occurs with
I shift s in text/string T if:

for all kin [1, |P|]: P[k] equals T[s+k]
- 7 2 43
T_>t=~tama e[el s e s [[e [T [p s [P [] "]
pattern | p aln
P —_— alm|a no match at position 0
Ilm|a|n|a no match at position 1
a alp no match at position 2
nla|p]| | no match at position 3
alp|l|a o match at position 4
S:5 e ———- (P | | [& | D match at position 5

I String matching

Both the pattern, P, and text, T, come
I from the same finite alphabet, }.

empty string (“”) = €

— L
w is a prefix of x=w | X, means exists
y s.t. wy = X (also implies |w| < [x])
(w | x = w is a suffix of x)

w prefix of x means: all the first
letters of x are w

X ———— "bread”

Prefix

prefixes of x »b . br. bre, brea
suffixes of x—~read . ead, ad . d

is,re, pre sent ation
Nnot P’Efﬂﬁ}wm

v Voo

engIISh ! mis- re- pre- sent -ation -5

I Suffix

| @1 <yl x1y
(b) If ly| < |x|, y] x
(c) It IXI =y, x=y

If x|zandy]z, then:

| |
: [:‘I .' . ——

| | =
ia) (b}

:

Dumb matching

Dumb way to find all shifts of P in T?
Check all possible ShlftS'

a]c[a]

!f

§=()
‘a‘a‘b

(see: naiveStringMatcher.py)
Run time?

(a)

D‘C

§=

[a_c‘a a 13-‘

—» g

|

oo

(b)

HEEE

b

oo

(C)

1

‘a':aabc‘

ALk
/
-‘f_ﬂ,{a‘ﬂlhl‘

(d)

I Dumb way to find all shifts of P in T?
I Check all possible shifts!

Gl[sfeole] [s[elePle] [e[eRlaPle] [[e[e[alo]e
!f [/f

b=

WRE CRB SRR
(a) (b) (c) (d)

(see: naiveStringMatcher.py)

Run time?

O(|P| |'T})

Dumb matching

§=()
‘a‘a‘b

A better way is to treat the pattern
I as a single numeric number, instead
of a sequence of letters

Rabin-Karp algorithm

Soif P={1, 2, 6} treat it as 126
and check for that valuein T

I The benefit is that it takes a(n almost)
I constant time to get the each number
in T by the following:
(Lett =Tls, s+1, ..., s+|P|])

Rabin-Karp algorithm

t , =d(t —T[s+1]h) + T[s+|P|+1]
whered = |2 |, h=d""!

Rabin-Karp algorithm

Example: > ={0,1,...,9},|2 | =10
T={1,2,6,4,7,2}

P={6,4,7}

t, =126

t, =10(126-T[0+1]10°") +T[0+|P|+1]
t, =10(126-100) +T[0+3+1]

t, =264

This is a constant amount of work
I if the numbers are small...

Rabin-Karp algorithm

So we make them small!
(using modulus/remainder)

Any problems?

This is a constant amount of work
I if the numbers are small...

Rabin-Karp algorithm

So we make them small!
(using modulus/remainder)

Any problems?
x mod g=y mod g does not mean X=y

Hash functions

I Modulus is a one way function, thus

I computing the modulus is easy but
recovering the original number is
hard/impossible

One way functions

127 % 5=2,0r 127 mod 5 = 2 mod 5
However if we want to solve x%5=2,
all we can say is x=2+5k or some k

One way functions

Other one way functions?

Other one way functions?
I - multiplication
- hashing

One way functions

Multiplication is famous, as it is easy:
200*50 = 10,000

... yet factoring is hard:

132773= 31 * 4283 (what alg?)

I Hashing is another commonly used

I function for security/verification, as...
-fast (Jow computation)
-low collision chance

-cannot easily produce a specific
hash

One way functions

One way functions

MO55UMS -metalink.gpg

MD5SUMS . gpg

SHA1SUMS

SHALSUMS . gpg

SHA2565UMS

SHAZ565UMS . gpg

ubuntu-14.
" ubuntu-14.
ubuntu-14.
ubuntu-14,
ubuntu-14.
ubuntu-14,
ubuntu-14,

hnntn-14

04

04,
B4,
B4.
64,
B4,
04,

Al

.3-desktop-amdb4.

3-rdecktnn-i138R icn tnrreant

3-desktop-amd&d.
3-desktop-amdb4.
3-desktop-amded.
3-desktop-amdad.
3-desktop-amd6d.
3-desktop-1386.1is0

B6-Aug-2015 18:52

198

06-Aug-2015 19:45 193

Mozilla Firefox

®) http://re...A2565UMS x

06-A
iso B5-A
iso.torrent 86-A
iso.zsync 06-A
list B5-4
manifest B5-4
metalink B6-A

a5-A

AR - A

ubuntu.com

756a42474bc437f614caaf9dbbci8n8038d1a586d172894c113bb1c22b75d580
266242224706bb498a30a8b2abech830c94284a5c8260109783b817392272120
a3b345908a826e262f4ealafeb3s7fd0%ecds58cf34e6c9112ceaddbbss5ccdfh
a5cB2e253816ab335269adblabcl76ed fFO75093b90854439b4290Tcedb31 28
bc3b20adonf19de169206af0dfSad186c61eddB8s12262c55dbca3b7blf1cdab

*ubuntu-14.04.3-desktop-amdé4.iso
*ubuntu-14.084.3-desktop-1386.1s0
*ubuntu-14.04.3-server-amd64.1iso
*ubuntu-14.04.3-server-1386.1so0
*wubi.exe

1011S

Hash funct

I Rabin-Karp algorithm

Larger q (for mod):
I - larger numbers = more computation
- less frequent errors

There are trade-otfs, but we often
pick q > |P| but not g >> |P|

Pick a prime number as q

I Rabin-Karp algorithm
I Kabin-Karp-Matcher(T,P,|2|,q,)
I d=|2|, h=d""" mod q, p=0, t, = 0
for i=1 to |P| // “preprocessing”
p = (dp + P[i]) mod q // for P
t, = (dt, + T[i]) mod q // for T
fors =0 to [T| - |P]
if p ==t , check brute-force match at s

if s <|T| - |P| then compute t_

I Rabin-Karp algorithm
To compute t ,
—(d(t t[s+1]h)+T[s+\P +1]) mod g

14 15 16 17 18 19
3|9 '_;jz 1|

5 7 9 10 11 12 13
O | 2 [EiaE i 2 [N

e ———

_"E____——L :_‘___F_____,-f""’ e g
T l l <+« mod 13
g8|o]3] 4[s]o]11[7]9|11]

3]11] 0| 1 [EEN 8 5
valid Spurious
match hit
I new ol new
high-order low-order high-order low-order
digit digit digit shift digit
e e T = (7-33»10+2 (mod 13)

1 | 4
= =
T }/ = R (mod 13)
7|8

I Example: T =11, 2,5, 3, 5, 2, 6, 3}
I P=1{2, 5}, g =5, assume base 10

Rabin-Karp algorithm

I Example: T =11, 2,5, 3, 5, 2, 6, 3}
I P=1{2, 5}, g =5, assume base 10
P=25mod5=0,t =12mod 5 = 2

t, ,=10*(t-T[i+1]*10)+T[i+|P|+1]%q
t, =25 mod 5 = 0, true match!
t,=53 mod 5 = 3,

t, =35 mod 5 = 0, false match

Rabin-Karp algorithm

Rabin-Karp algorithm

T'=11,2,5,3,5,2,6,3},P=12, 5}
t. =52 mod 5 = 2,

t, =26 mod 5 =1,
t, =63 mod>5 =3
t, ,=10*(t-T[i+1]*10)+T[i+|P|+1]%q

So only s=1 is match

Rabin-Karp algorithm

Run time? (Average? Worst case?)

I Run time?
I - “preprocessing” (first loop)= O(|P])
- “matching” (second loop) = O(|T|)

Rabin-Karp algorithm

So O(|T|+|P|) and as n>m, O(|T|) on
average

Worst case: always a match O(|T| |P|)

