Greedy algorithms

GREEDY decisions based on the local optimum
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Find the best solution to a local
I problem and (hope) it solves the
global problem

A

Greedy algorithms

local maximum
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I Greedy algorithm

Greedy algorithms find the global

maximum when:

1. optimal substructure — optimal
solution to a subproblem is a
optimal solution to global problem

2. greedy choices are optimal
solutions to subproblems



I Activity selection

A list of tasks with start/finish times

Want to finish most number of tasks
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Activity selection

Optimal substructure:

I Finding the largest number of tasks
that finish before time t can be
combined with the largest number
of tasks that start after time t




Activity selection

Greedy choice:
The task that finishes first is in a

optimal solution

Proof:

Suppose we have optimal solution
A. If quickest finishing task in A,
done. Otherwise we can swap it in.



Activity selection

Greedy: select earliest finish time
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Knapsack problem

A list of items with their values, but
I your knapsack has a weight limit

Goal: put as much value as you can
in your knapsack
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Knapsack problem
What is greedy choice?
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Knapsack problem
What is greedy choice?

A pick the item with highest value
to weight ratio (value/weight)
(only optlmal if fractions allowed)
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Huffman code

I Who has used a zip/7z/rar/tar.gz?
Compression looks at the specific
files you want to compress and
comes up with a more efficient
binary representation



Huffman code

How many letters in alphabet?
How many binary digits do we need?

If we are given a specific set of
letters, we can have variable length
representations and save space:
aaabaaabaa : a=0,b=1->0001000100
or :aaab=1,a=0 -> 1100



Huffman code

Huffman code uses variable size
I letter representation compress binary
representation on a specific file

letter:

a b c d e
count: 157 6 6 5

What is greedy choice?



Huffman code

We want longer representations for
less frequently used letters

Greedy choice: Find least frequently
used letters (or group of letters)

and assign them an extra 1/0

Repeat until all letters unique encode



Huffman code

1. Merge least - ® ‘~ ©
frequently used nodes =~ “
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2. Repeat until
all nodes on a tree ® 0



Huffman code

Huffman coding length =
15*1+3*24=87

Original coding length =
15*3+3*%24 =117

25 percent compression



Dynamic programming

Greedy algorithms are closely
I related to dynamic programming

(You will learn this in CSci 5421)

Idea: “tforward” solution hard, so
start from end (subproblem) and
recombine to get start



I Dynamic programming

Shortest path from A to D?
I (Can start/end on x or y)
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