

Greedy algorithms

Greedy algorithms

Find the best solution to a local
problem and (hope) it solves the
global problem

Greedy algorithm

Greedy algorithms find the global
maximum when:
1. optimal substructure – optimal

solution to a subproblem is a
optimal solution to global problem

2. greedy choices are optimal
solutions to subproblems

Activity selection

A list of tasks with start/finish times

Want to finish most number of tasks

Activity selection

Optimal substructure:
Finding the largest number of tasks

that finish before time t can be
combined with the largest number
of tasks that start after time t

Activity selection

Greedy choice:
The task that finishes first is in a

optimal solution

Proof:
Suppose we have optimal solution

A. If quickest finishing task in A,
done. Otherwise we can swap it in.

Activity selection

Greedy: select earliest finish time

Knapsack problem

A list of items with their values, but
your knapsack has a weight limit

Goal: put as much value as you can
in your knapsack

Knapsack problem

What is greedy choice?

Knapsack problem

What is greedy choice?

A: pick the item with highest value
to weight ratio (value/weight)
(only optimal if fractions allowed)

Huffman code

Who has used a zip/7z/rar/tar.gz?

Compression looks at the specific
files you want to compress and
comes up with a more efficient
binary representation

Huffman code

How many letters in alphabet?
How many binary digits do we need?

If we are given a specific set of
letters, we can have variable length
representations and save space:
aaabaaabaa : a=0,b=1->0001000100
or :aaab=1,a=0 -> 1100

Huffman code

Huffman code uses variable size
letter representation compress binary
representation on a specific file

letter: a b c d e
count: 15 7 6 6 5

What is greedy choice?

Huffman code

We want longer representations for
less frequently used letters

Greedy choice: Find least frequently
used letters (or group of letters)
and assign them an extra 1/0

Repeat until all letters unique encode

Huffman code

1. Merge least
frequently used nodes
into a single node
(usage is sum)

2. Repeat until
all nodes on a tree

Huffman code

Huffman coding length =
15 * 1 + 3 * 24 = 87

Original coding length =
15 * 3 + 3 * 24 = 117

25 percent compression

Dynamic programming

Greedy algorithms are closely
related to dynamic programming

(You will learn this in CSci 5421)

Idea: “forward” solution hard, so
start from end (subproblem) and
recombine to get start

Dynamic programming

Shortest path from A to D?
(Can start/end on x or y)

