Greedy algorithms

GREEDY decisions based on the local optimum

I.I""'-.
fx/ \r’x
,.r*-ﬁ_.-""'f \; ..r'-.r""f-" \‘\"-f'*-.
A e . G o .
{9

}"-..-"'{.-""-..r"n-. L W .}"'-.:"‘{}"-.f .r"-.-"{_.-"h..r’ ™

Find the best solution to a local
I problem and (hope) it solves the
global problem

A

Greedy algorithms

local maximum

tttttt

I Greedy algorithm

Greedy algorithms find the global

maximum when:

1. optimal substructure — optimal
solution to a subproblem is a
optimal solution to global problem

2. greedy choices are optimal
solutions to subproblems

I Activity selection

A list of tasks with start/finish times

Want to finish most number of tasks
i |1

SN | B2
I I =
L 00 =) B

WO R B

o)
o
=
»

§; 1
fe | 3 X

5 B 7 3 9 1 11 12 13 14 15 16

Activity selection

Optimal substructure:

I Finding the largest number of tasks
that finish before time t can be
combined with the largest number
of tasks that start after time t

Activity selection

Greedy choice:
The task that finishes first is in a

optimal solution

Proof:

Suppose we have optimal solution
A. If quickest finishing task in A,
done. Otherwise we can swap it in.

Activity selection

Greedy: select earliest finish time

I 0 5 10 15
1

2z
.

3

[V

T

Knapsack problem

A list of items with their values, but
I your knapsack has a weight limit

Goal: put as much value as you can
in your knapsack

item | welght value
|) 925
)} . \'2(_1 . capacity W = 6.
<} | SiH
| | 540
) h SH0)

Knapsack problem
What is greedy choice?

item | welght value
1 925
f " \3(_1 , capacity W = 6.
o} 1 -"JJ;;
i | 540
D) S50

Knapsack problem
What is greedy choice?

A pick the item with highest value
to weight ratio (value/weight)
(only optlmal if fractions allowed)

' | Wel 1 value

1 Ii S‘_--!?}

i) .} H.)(] ‘ . ‘
N - =7 capacity W= 6.
9 | glo a '

| | S40

B S50

Huffman code

I Who has used a zip/7z/rar/tar.gz?
Compression looks at the specific
files you want to compress and
comes up with a more efficient
binary representation

Huffman code

How many letters in alphabet?
How many binary digits do we need?

If we are given a specific set of
letters, we can have variable length
representations and save space:
aaabaaabaa : a=0,b=1->0001000100
or :aaab=1,a=0 -> 1100

Huffman code

Huffman code uses variable size
I letter representation compress binary
representation on a specific file

letter:

a b c d e
count: 157 6 6 5

What is greedy choice?

Huffman code

We want longer representations for
less frequently used letters

Greedy choice: Find least frequently
used letters (or group of letters)

and assign them an extra 1/0

Repeat until all letters unique encode

Huffman code

1. Merge least - ® ‘~ ©
frequently used nodes =~ “

o

&

into a single node e @

(USage 1S Sum) e e OO

2. Repeat until
all nodes on a tree ® 0

Huffman code

Huffman coding length =
15*1+3*24=87

Original coding length =
15*3+3*%24 =117

25 percent compression

Dynamic programming

Greedy algorithms are closely
I related to dynamic programming

(You will learn this in CSci 5421)

Idea: “tforward” solution hard, so
start from end (subproblem) and
recombine to get start

I Dynamic programming

Shortest path from A to D?
I (Can start/end on x or y)

A B C D

